Making Congestion Control Algorithms Insensitive
to Underlying Propagation Delays

Cyrus Illick &
Columbia University, United States

Michael Roger
Columbia University, United States

Vishal Misra
Columbia University, United States

Dan Rubenstein
Columbia University, United States

—— Abstract

Underlying propagation delays, which significantly impact flow Round-Trip-Times (RTTs), funda-
mentally shape how congestion control algorithms (CCAs) allocate bandwidth among competing
flows. Traditionally, lower RTTs were desirable, as a flow rate would decrease as RTT increased
under conventional CCAs such as Reno and Cubic. More recently, algorithms like BBR reversed this
behavior, favoring flows with larger RTTs. In modern heterogeneous networks, where competing
flows may employ different CCAs and serve diverse application workloads, notions of fairness become
ambiguous and RTT’s role further complexifies addressing an already very challenging problem.
We offer a simple but initially counter-intuitive remedy to address how all CCAs can remove this
inherent sensitivity to propagation delay: have all flows “emulate” the same underlying propagation
delay. Unsurprisingly, this idea is often met with a lot of resistance, since it is in many ways counter
to many fundamental tenets of networking and congestion control. In this paper, we try to make
the case that while the idea is not a silver bullet on its own, it can greatly simplify design and
predictability across existing and future congestion control protocols going forward.

2012 ACM Subject Classification Networks — Transport protocols

Keywords and phrases Congestion Control, Propagation Delay
Digital Object Identifier 10.4230/0OASIcs.NINeS.2026.27

Acknowledgements We want to thank anonymous reviewers and our shepherd Keith Winstein for

valuable feedback that helped improve our paper.

1 Introduction

Internet congestion control algorithms (CCAs) prevent congestion collapse by having senders
interpret feedback from receivers to gauge the status of the network over which their
transmissions are sent, and adjust sending rates accordingly. TCP originally obtained its
CCA based on the classical analysis of Chiu and Jain [15]. Van Jacobson and Mike Karels
furthered the work by implementing the additive increase multiplicative decrease (AIMD)
mechanism based on the work in 1988 [27], saving the Internet from congestion collapse.
Although the original mechanism has undergone several refinements over the years, a flow’s
rate is impacted by both its round trip time (RTT) and loss probability, demonstrated
empirically and analytically by several classical works [39, 46]. In particular, the dependence
on RTT, known as “RTT unfairness”, is perceived as “unfair” from the perspective of many
well-formulated fairness measures, such as max-min fairness [29], which implicitly postulate
that while a flow’s rate must conform to fit within the constraining bottleneck, it should not
be penalized with respect to other flows through the bottleneck simply for having a different
? Cyrus Illick, Michgel Roger, Visha.l Misra, Dan Rubenstein;

37 icensed under Creative Commons License CC-BY 4.0
1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 27; pp. 27:1-27:26

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:cdi2105@columbia.edu
https://doi.org/10.4230/OASIcs.NINeS.2026.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

27:2

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

RTT. RTT is a dynamic aggregate of several delay components, but the main component that
leads to RTT unfairness is the underlying propagation delay which, for a fixed path between
sender and receiver, is defined as the minimum time required for a sender transmitting a
data packet to receive an acknowledgment of its receipt. Propagation delay incorporates
both the time the packet travels, as well as the (minimum) times the various routers and
end-systems require to perform the necessary associated processing.

From an application-based perspective, while partitioning of bandwidth must be sens-
itive to the number of flows sharing a bottleneck, the manner in which this bandwidth is
proportionally partitioned should really be a function of the relative applications’ need and
importance - measures that rarely depend on the underlying propagation delay. Assuming
applications adopt CCAs that align with their needs, it’s essential to understand how often
those needs are met under varying propagation delays. Here, conventional measures of
flow competition - such as friendliness, aggressiveness, and RTT-unfairness which compare
the respective rates allocated to competing flows - can expose the fact that heterogeneous
flows (with different CCAs, application workloads and propagation delays) do not share
bandwidth equally but they do not quantify how predictable a sessions performance is with
respect to propagation delay, or what we call the sensitivity to propagation delay: how much
a flows allocation might change were the specific propagation delays of competing flows
simply different. Our goal in this paper is to focus attention on predictability with respect to
propagation delay and not fall into an argument over the definition or importance of Internet
fairness.

A variety of CCAs [7, 37, 16, 17, 11, 8] already exist that are insensitive to propagation
delay, i.e., they allocate shares at a bottleneck across flows irrespective of the underlying
flows’ propagation delays by introducing or modifying specific mechanisms and specialized
parameters of the CCA. However, their success requires that they operate in what we
call CCA-homogeneous environments, i.e. each flow uses the same CCA such that this
CCA competes only with itself. It is well known that this insensitivity to propagation
delay fails between flows using the same specially-engineered CCAs when competing in a
CCA-heterogeneous bottleneck environment that contains flows that utilize alternate CCAs
[7, 19, 32, 37, 22]. Presently, the allocations at a given bottleneck for the most prevalent
CCAs utilized by popular applications, such as the immensely popular BBR [12, 14] and
Linux Standard Cubic [23], remain affected by propagation delay, even in CCA-homogeneous
environments [50, 26, 28, 47, 33, 6, 51, 4, 21].

In this paper, we propose an alternate approach to reduce the influence of propagation
delay on CCA competition - suitable for Internet heterogeneity and application priorities.
Rather than altering or introducing new designs to the utilized CCA, we propose altering the
perceived propagation delay the CCA experiences by introducing artificial delay added to the
acknowledgments along the network path. This unconventional, likely controversial approach
can reduce the dependence on propagation delay for long-lived flows and alleviate the burden
of designing complex mechanisms in the CCA’s control loop. Given the controversial nature
of the proposed idea, we begin in §2 addressing what we imagine would be a reader’s knee-jerk
reaction to why this is not a good idea, and address those concerns up-front in a qualitative
manner that provides a guide for the subsequent more technical discussion in the remainder
of the paper. §3 explains the recent reconsideration of how objectives of CCAs really go
beyond simple notions of fairness, and how one might view variations in propagation delay
as a significant impediment to these redefined objectives as well. We attempt to quantify the
impact on allocations that varying propagation delay might have by constructing a novel
d-sensitivity metric in §4. We are then in the position to motivate more formally an argument



C. lllick, M. Roger, V. Misra, D. Rubenstein

for artificial delay in §5, and explore its preliminary impact on the sensitivity of BBR in §6
and its suitability for more complex heterogeneous and practical scenarios in §7. We continue
discussion in §8, related works in §9, and §10 concludes the paper and proposes future work.
The main contributions of this paper are:
A framing of the effects of propagation delay, including an attempt at a well formalized
metric that measures CCA sensitivity to delay, beyond a mere notion of fairness.
An argument for resolving the sensitivity of existing CCAs to propagation delay by
injecting “artificial” delay.
Our early experiences implementing the artificial delay mechanism and experiments
demonstrating how CCA sensitivity to delay is thereby reduced.

2 Q&A

Our proposed idea is quite simple to state. Our goal is to take propagation delay out of the
congestion control “equation” by delaying the response to ACKs at the sender. Conceptually,
if a flow’s propagation delay is d, and we require flows to emulate a delay of A > d, what a
sender simply needs to do in theory is, upon receiving an ACK at time ¢, wait until time
t+ A — d to respond to that ACK. Are there not drawbacks when flows artificially delay their
response to valuable congestion feedback? In this section, we provide a qualitative Q&A that
addresses these concerns up front, divided into three basic areas of concern: Performance,
Network-wide adoption, and Implementation. Where possible, we connect answers to later
sections where we provide formal metrics and experimental evidence.

2.1 Performance Concerns

Question 1: What is meant in this paper by predictable performance?

Answer: A flow’s rate is clearly a function of the attributes of the bottleneck(s) as well as
the number and attributes of the flows with which it competes for that bottleneck bandwidth.
For the purposes of this paper, we informally define predictable to mean that with knowledge
of these bottleneck and flow attributes, one can determine the throughput that each flow will
obtain. Current reality is that these rates also depend on the respective flows’ propagation
delays: predictable means that it should not. We formalize this notion further in §4.1.
Question 2: Isn’t delaying responses to feedback just a bad idea?

Answer: Not necessarily. Inflating RTTs inherently decreases the speed at which CCAs are
able to receive and adapt to feedback. However, performance of an individual flow is often
more reliant on how its own propagation delay compares to competing flows rather than the
propagation delay itself. Later in §4 and §6, we show that once all flows are equalized to the
same delay, their allocations become much more predictable and less variable, even though
RTTs are inflated. In practice, consistency improves more than responsiveness suffers.
Question 3: Some CCAs are delay based. How do they get their feedback signal?
Answer: Our proposal is not to normalize RTT which is defined to include components of
delay in addition to propagation delay (e.g. queuing). By normalizing flows’ propagation
delays, RT'T delay experienced by ACKs still capture jitter and congestive delay i.e., the

sender assesses the underlying propagation delay and then pads ACKs by a constant amount.

As shown in §6, experiments confirm that CCAs relying on RTT variations continue to
operate correctly under added artificial delay.

Question 4: What about real-time traffic that is delay sensitive? Doesn’t adding delay
decrease responsiveness for applications like gaming or video-conferencing that depend upon
low latency delivery?

27:3

NINeS 2026



27:4

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

Answer: Note that when a sender has a data packet to send, we are not adding any
delay between its departure from the sender and its arrival at the receiver. On a per-
packet basis, delaying an ACK may affect the aggressiveness of startup but not payload
latency. Experiments in §5.1 confirm this: adding 60ms to ACKs increases RTT but leaves
application-level one-way data latency unchanged.

Question 5: OK, so what about startup / transient effects (sender would react slower)?
Answer: The behavior is equivalent to a flow with propagation delay A, and most CCAs are
designed to operate robustly across a wide delay range. While convergence during startup
may be slower, this is already impacted by asymmetric delays in today’s Internet. Moreover,
results in §6 show that even with such transient effects, equalization substantially reduces
variability in final allocations.

Question 6: What about short-lived flows? Can delay equalization benefit a flow that never
exits slow-start?

Answer: Most flows are short-lived flows [10]. In this paper we focus on long-lived flows
which adapt to congestion signals and share bandwidth. We suggest that this idea should not
be used on short-lived flows and leave it to future work to study if some method of equalizing
delay could benefit performance within slow-start.

Question 7: What about flows entering/exiting the bottleneck? Won't the added delay
interfere with stabilization?

Answer: The majority of Internet traffic volume is long-lived video streaming [3]. Slower
convergence may matter, but experiments in §7.2 show that even naive artificial delay (e.g.,
adding a fixed constant) reduces variability across flows. If needed, a two-tier system could
allow “rush ACK delivery” during unstable periods, then revert to delayed ACKs once
equilibrium is reached.

Question 8: How does one quantify the impact that this propagation delay normalization
has on a heterogeneous suite of CCAs sharing a bottleneck link?

Answer: We think a new measure is needed to capture this effect, as existing measures of
fairness or application performance with respect to varied propagation delays has not received
sufficient attention as discussed in §3. This motivates our formal definition of a new metric
in §4, where we quantify sensitivity to propagation delay directly, independent of notions of
fairness - which allows for complete evaluations in §6 and §7.

Question 9: So you’ve gotten rid of the propagation delay issue. But you still can’t really
guarantee any “application-needed” performance? Why bother?

Answer: We agree that heterogeneous propagation delay is only one performance concern.
But delay sensitivity is a uniquely extraneous factor—mnot dictated by end-host choices—that
introduces unpredictability. Neutralizing it makes the performance landscape more stable,
giving applications and CCAs a cleaner foundation to optimize around their own objectives.

2.2 Network-Wide Adoption

Question 10:  What about network requirements? How would routers need to be re-
programmed?

Answer: Our proposal is implemented at the data source (sender) such that no router
changes are required. The sender does need to maintain some additional state about the
ACKs it is holding: basically per ACK the sequence number and release time. Note that
this information is quite minimal and there are several ways to compress this information
efficiently (for starters, store the delta between consecutive sequence numbers and consecutive
release times).



C. lllick, M. Roger, V. Misra, D. Rubenstein

Question 11: FEven if the idea could improve predictability of performance, how do you get
CCAs to adopt this approach?

Answer: In the short term (as well as long term if needed), we show in §5.3 that the
delaying mechanism could be implemented externally from the CCA via a proxy at the sender
that captures ACKs and holds them for the appropriate time intervals prior to releasing
them to the CCA. Furthermore, for some protocols like BBR whose throughput has been
shown to lessen with lessening propagation delays, there is an impetus to mitigating this
phenomenon and our experiments (§6) show clear gains in both throughput balance and
stability across flows.

Question 12: What will happen to my favorite CCA?

Answer: Each CCA is impacted differently by propagation delay and performance in
heterogeneous competition will depend on what A propagation delay is inflated to. Once a
target A is chosen, CCAs converge toward allocations with much less variability due to delay.
This means performance becomes more consistent across CCAs, rather than less. We discuss
how an agreed upon A can benefit the design of new CCAs in §8.

Question 13: So how does one go about choosing a good value for A?

Answer: A has to be large enough to allow for the vast majority of competing flows to
participate. Flows in different classes of networks (datacenter, WAN, satellite) may have
different viable ranges of propagation delay, so perhaps it make sense to have “delay classes’
where flows compete within their class and have network support where different delay classes
are allocated bandwidth. Alternatively, if some flows exist above the point of equalization
it is likely that reducing the magnitude of propagation delay asymmetry will reduce delay
sensitivity and improve consistency (discussed further in §7.2 and §8)

Question 14: Should this idea be adopted everywhere right away? Are there instances where

)

this idea will have a negative impact?

Answer: In this paper, we argue for the viability of this idea and provide initial results
that suggest its potential benefit. Future work is required for more robust evaluations across
diverse application workloads and network settings. As noted in question 6, there are some
instances, such as short-lived flows, where this idea is likely to cause more harm than good.
We propose guidelines for when this idea should and should not be applied in §5.2 and discuss
further limitations in §8.

2.3 Implementation Concerns

Question 15: How would you suggest actually implementing this thing?

Answer: We propose a simple proxy solution in §5.3, which we evaluate in both emulated
and real-world settings in §6. In both cases, variability due to propagation delay drops
dramatically while utilization remains high, showing that the implementation is practical.
Question 16: What about a server that is the sender for many (thousands / millions) of
flows? Can’t state requirements get overwhelming?

Answer: As noted in Question 10, there are ways to compress per-flow state to only a few
bits per ACK that is actively being delayed. Compared to existing per-flow state that the
server must maintain, such overhead is likely acceptable.

3 CCA Goals: Beyond Fairness

To reduce the impact of propagation delay in heterogeneous competition, we must first
address a different challenge introduced by Internet heterogeneity: how competing alternate
CCAs should compete.

27:5

NINeS 2026



27:6

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

A recent line of work motivating this paper involves an introspective reconsideration
of what the underlying goals of CCAs should be when deployed in networks supporting
heterogeneous applications with differing requirements and measures of success. Here, simply
ensuring an equal division among flows constrained by the same bottleneck may not be in the
best interest of the applications these flows are supporting [55, 49, 58, 9, 18]. Moreover, the
very notion of “fairness” in Internet bandwidth allocation is not clearly defined or enforced in
practice. Commercial arrangements between ISPs and content providers, or enterprise-specific
peering agreements, frequently depart from broad fairness doctrines such as max-min fairness.
Instead, they reflect business relationships and performance objectives that do not necessarily
align with a universal fairness principle [9].

Regardless of how one might define an ideal division of bandwidth among competing
heterogeneous flows, any sensitivity to propagation delay only complicates the ability to reach
this point consistently. An exception arises in formulations where the desired allocation itself
is explicitly defined as a function of propagation delay. For example, some arguments regard
it as “acceptable” for a short-RTT flow to receive proportionally greater bandwidth than an
otherwise identical long-RTT flow [23]. In such views, variation in allocation with propagation
delay reflects design intent rather than a failure of competition. Our focus, however, is on
the broad class of objectives—spanning many practical notions of fairness and application
priorities—for which the intended operating point does not depend on propagation delay.

3.1 Propagation Delay Impacts Application Performance

Recent work [48] provides an in-depth evaluation of how competing popular applications
share Internet bandwidth when congested at a common bottleneck, demonstrating that (1)
applications do not share bandwidth equally and (2) practical evaluations must consider the
full network stack as opposed to settings which isolate the underlying CCA mechanisms in
controlled environments. Notably, this prior work equalizes the competing flows’ propagation
delays at the bottleneck to focus on how differences in rate achieved between applications was
a function of the differences in their workload and chosen mechanisms (CCA, application
layer protocols) but not from differences in respective propagation delays.

To illustrate the impact of propagation delay in practical settings, let us run 5 actual
Internet experiments in which a YouTube (YT) session (utilizing a variant of BBRv3[14])! and
a OneDrive (1D) session (utilizing Cubic[23]) compete across a 50 Mbps capacity bottleneck
with the same moderate sized buffer in all experiments (equivalent to 2BDP assuming 15 ms
delay), where the only change across the experiments are the propagation delays experienced
by the respective sessions. For 1D, we download the same 5 GB file in each trial. For YT, we
play the same video in each trial, selecting the 4k video quality option in YT, preventing the
player from down-scaling due to adaptive bit rate logic (we found that YT was still impacted
by propagation delay when adaptive bit rate logic is enabled).

To manipulate propagation delay, we introduce a fixed artificial delay at the receiver side -
inflating the natural end-to-end propagation delay, allowing us to control delay asymmetrically
across competing flows. In this case, we utilize artificial delay on the receiver end to emulate
what would occur had the natural propagation delay been larger. We discuss the use of
artificial delay to reduce such sensitivity (when applied at the sending side) and the validity
of artificial delay in §5.

Each trial consists of an averaging over 4 repetitions, where each repetition is run for 150

L CCA utilized by YouTube reported in [13].



C. lllick, M. Roger, V. Misra, D. Rubenstein

App 1 Client

{50 Mbps == | 2 Client

e = m———————
H N

i Controllable Dy, * App n Client
Public Internet i FIFO bottleneck Ackg

® NetEm delay inflation
Figure 1 Application Experiment Setup: Competing flows sourced from application services

(App 1, ..., App n) transmitting data to receivers (clients) behind a 50Mbps capacity bottleneck
with moderate sized buffer.

Trial # | Delay (ms) | Rate (Mbps) | YT performance
1ID| YT 1D YT Stall Time (s)
1 7 7 33.0 | 15.8 35.4
2 12 12 30.7 | 17.9 7.7
3 12 37 30.6 18.3 5.9
4 37 12 354 | 124 72.2
5 37 37 25.7 | 18.2 6.8

Table 1 Performance of OneDrive (Cubic) vs YouTube (BBRv3) with varying propagation delays.
YT’s total stall time varies over 12x across trials despite fixed workload and capacity,
driven only by changes in delay.

seconds - neither YT or 1D finish in this time. The topology of our testbed is included in
Figure 1 and additional details on our full application experimental methodology is deferred
to §7.3.

Table 1 presents, row-by-row, results for the five distinct trials, each differing by the
propagation delays experienced by the applications, as described in columns 2 and 3 for 1D
and YT respectively. Performance results include their respective average rates (columns 4
and 5), and an application-level measure of performance for the YT session in terms of total
time stalled - including the initial startup delay and all subsequent rebuffering durations
during playback (column 6), measured using Selenium web driver [1].

The trials reaffirm that application performance is indeed very sensitive to the propagation
delays experienced by the competing flows. As shown in Table 1, Trials 3 and 4 reveal
a 32% decrease in rate (from 18.3 to 12.4 Mbps) and a 12X increase in total stall time
(from 5.9s to 72.2s)? for the YT session caused solely by a change in propagation delay.
The workload and bottleneck are unchanged, but reversing the delay asymmetry between
flows causes YouTube’s performance to collapse. Performance across these trials depends
not only on the CCAs utilized by the competing applications, but also on their respective
workloads, application-layer mechanisms, and any unobservable factors inherent to real-world
experiments. However, the qualitative trends observed by comparing performance between
these trials mirror those seen in our controlled, CCA-isolated experiments involving a bulk-
transfer Cubic flow competing against a bulk-transfer BBR flow under the same bottleneck

2 Stall time ranges from 3.5s to 9.1s between repetitions of Trial 3 and from 65s to 86s between repetitions
of Trial 4.

27:7

NINeS 2026



27:8

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

and propagation-delay conditions. In particular, we observe the the trend of the BBR flow
between these settings: when both flows have identical propagation delays, the rate allocated
to BBR increases as the common delay increases; when the Cubic flow’s delay is held fixed
and the BBR flow’s delay is varied, BBR’s rate increases with its own delay; and when the
BBR flow’s delay is held fixed while the Cubic flow’s delay is varied, BBR’s rate increases as
the Cubic flow’s delay decreases.

Note a single configuration (i.e., a single trial) is not enough to evaluate how a 1D and
YT flow would share a given bottleneck. Before introducing our proposed metric (d-sensitivity)
in §4 and the potential of artificial delay §5, we distill a few key observations from these
experiments: (1) Propagation delay significantly impacts performance across heterogeneous
applications - even when all other underlying network conditions and workloads remain
constant. (2) Properties of RTT-unfairness in homogeneous CCA competition do not always
extend to heterogeneous settings; for example, between trials 2 and 4, the rate of 1D
(utilizing Cubic) increases when its delay increases despite the dynamics of Cubic flows in
homogeneous competition where more bandwidth is conceded to the shorter delayed flow [23].
(3) Equalizing propagation delay between competing applications does not isolate its effect in
heterogeneous settings (for instance compare trials 1,2 and 5 where propagation delays across
both flows are identical); application mechanisms and CCAs interact with delay in non-trivial
ways, and the choice of equalization point itself influences outcomes. (4) Traditional metrics
of RTT-unfairness or rate allocation that measure over a single instance (where propagation
delays are not varied) fail to capture the variability in quality-of-experience observed in
practice.

These observations motivate the need for a new, generalizable approach to quantify
and address how sensitive a flow’s performance is to propagation delay, independent of
assumptions about fairness or homogeneity.

4 Delay-sensitivity (not Fairness!)

A challenge with CCA allocations being dependent on propagation delay is an issue that is
beyond fairness. For a given configuration of flows, each using its preferred CCA, and a given
bottleneck link, can we determine the allocation, i.e., the respective throughputs of these
flows? If the answer were simply “yes”, we could then utilize some measure of satisfaction to
quantitatively gauge the acceptability of this allocation. Unfortunately, the allocation is often
also a function of the respective propagation delays of these flows: the same set of flows using
the same CCAs passing through the same bottleneck but with different propagation delays
can often result in a very different allocation. Our goal here is not to assess the fairness of
the set of allocations as a function of the propagation delays, but instead to understand how
much the variability of these propagation delays impacts the possible allocations. In other
words, we want to understand the predictability of performance with respect to network
propagation delays.

In this section, we define d-sensitivity to generalize this notion of sensitivity and apply
to network settings involving any number of flows with any level of heterogeneity between
them, and for performance metrics beyond average throughput?.

3 Metrics beyond average throughput discussed in §4.1.3



C. lllick, M. Roger, V. Misra, D. Rubenstein

4.1 /-sensitivity

Define Z = ({f;}, B) to consist of n flows f1, ..., f, passing through a bottleneck B. Each flow
fi = (a;, w;) utilizes congestion control algorithm a; € A (where A is the set of heterogeneous
CCAs) and carries workload w; € W (where W is the set of possible workloads)*. The
bottleneck B = (C, £, Q) is defined in terms of capacity C, buffer limit £ and queuing discipline
Q@ (e.g FIFO). Note that Z fixes a bottleneck, a set of flows through the bottleneck, the
utilized CCAs and workloads of each flow without yet specifying the propagation delays
assigned to these flows.

We define a propagation delay instance, D = (dy,ds, ..., d,) to be a specific assignment of
propagation delays to these n flows. Armed with both Z and D, one can model, simulate, or
execute the system and determine the resulting rates r; = R;(Z, D) of each of these n flows
when operating in a network setting defined by Z and D.

d-sensitivity does not simply consider a single propagation delay instance, but instead
is defined over a set D = {D} of permissible (to the current setting) propagation delay
instances. Each distinct D € D will yield its own set of resulting rates, such that R;(Z, D)
need not equal R;(Z, Ds) for two distinct Dy, Dy € D. The d-sensitivity of flow ¢ for the
network setting described by Z over the set of propagation delay instances D is,

0z,p(1) = log(max R;(Z, D)) — log(min Ri(Z, D))

In other words, take this network of flows, sample using different propagation delays
drawn from this set D of permissible propagation delay assignments, and for each flow f;
compute the log-ratio® between the largest and smallest allocations assigned to it across all
D € D. §zp(i) = 0 implies that for the network setting Z, the rate r; achieved by flow i
is unaffected by changes in propagation delay assignments in the set of propagation delay
instances D considered.

d-sensitivity is intended to apply on a case-by-case basis for a) a given set of flows assigned
respectively to specific CCAs with specific workloads through a specific bottleneck link and
b) the permissible propagation delay conditions that can be undertaken by those flows.
Note that (a) is typical for most evaluations of congestion control protocols whereas (b)
allows for variation and comparison across these varied propagation delays, where traditional
evaluations often fix flows to specific propagation delays.

The reason for allowing the scenario to define the permissible set of delays that form D
is because different networking environments may have different limits on the ranges and
variances of permissible propagation delays. For instance, a data center environment might
comprise flows which are guaranteed to have similarly low propagation delays with minimal
variance [24]; a traditional wide area networking environment might consider a fairly broad
range of propagation delays (up to on the order of a few hundred milliseconds) [59]; and
space networks [5] might require consideration of delays that are even larger. Furthermore,
there are scenarios in which the delays of flows from a content delivery network CDN are
consistently small but can interact with competing flows which delays vary greatly.

For concreteness, we give some plausible ways to define the D, e.g.,

Uniform delay range D = {(d1,da, ...,d,) : 10 < d; < 100}: looking only at scenarios

where flow propagation delay ranges between 10 and 100.

4 The choice to define a flow based on both congestion control algorithm and workload inspired by [55].
5 We find the log-ratio more semantically meaningful than a standard ratio because a flow being “insensitive”
to delay maps elegantly to §(i) = 0.

27:9

NINeS 2026



27:10 Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

Single-flow variation D = {(d;, 10, ...,10) : 10 < d; < 100}: looking only at scenarios
where all d; are fixed at 10 except d; which varies between 10 and 100.

Symmetric variation D = {(d;,da, ...,d,) : 10 < dy < 50,d; = dp}: looking only at
scenarios where dy ranges from 10 to 50 and all d; equal d.

Note that D can be defined in such a way that there may be an (exponentially or even
infinitely) large set of propagation delay assignments such that it would not be feasible
to exhaustively run all configurations to determine the true max and min. We note that
experimentally sampling over a subset of configurations provides a lower bound to the delay
sensitivity. The observed minimum mg would upper bound the true minimum (mg > m),
and the observed maximum My would lower bound the true maximum (My < M), such that
log(Mo/mo) < log(M/m).

4.1.1 Walking through J/-sensitivity: A simple 2 flow example

Consider the network setting (Z) between YT and 1D from the previous section where the
two flows f1 (YT), fo (1D) share a 50 Mbps bottleneck. Suppose we allow just two possible
propagation delay instances:

Dy = (12ms, 12ms), Dy = (12ms, 37ms).
R1(Z,Dy) = 17.9Mbps and R;(Z, Dy) = 12.4 Mbps, so max Ry = 17.9, min Ry = 12.4

17.9

= 0zp(1) = logz(m

) ~ 0.53.

Hence, a d-value of 0.53 means that flow 1’s (in this case YT’s) throughput can vary by 1.45
times. Larger § indicates greater sensitivity to the range of delays in D. In this case the
variation in rate achieved by fi is due exclusively to variation in f’s (1D’s) propagation
delay.

4.1.2 Interpreting High J/-sensitivity

High d-sensitivity indicates that a flow’s performance can vary substantially across plausible
propagation delay configurations, even when all other factors - competing flows, utilized
protocols, workloads, and bottleneck properties - remain fixed.

A flow’s performance must depend on the number of competing flow workloads and the
constraining bottleneck these flows share, and will depend on the choices application services
make inline with their respective application needs.

But propagation delays are neither chosen by the end hosts or indicative of their needs.
When § is high, this lack of control translates into unpredictable performance. By contrast, low
0 implies more robust, predictable behavior - a desirable trait for any networked applications.
And § = 0 implies that the variation of propagation delays will have no effect at all on the
allocation.

4.1.3 Multi-metric J-sensitivity definition

Many applications prioritize QoE over raw throughput, and J-sensitivity must adapt ac-
cordingly. Here we extend our definition of §-sensitivity to allow for metrics of performance
beyond throughput after convergence. Let M € M be an arbitrary performance metric from
a set of possible metrics M (e.g. QoE metrics such as Flow Completion Time, Buffering
time, etc) such that m; = M;(Z, D) defines the performance of flow 4 on metric M in network



C. lllick, M. Roger, V. Misra, D. Rubenstein

setting Z with propagation delay assignment D. Thus, J-sensitivity of a flow ¢ on metric M
is,

M -\ _ i _ i .
07,p (i) = log(max M;(Z, D)) — log(min M;(Z, D))

For example, if we define D as the five propagation delay instances shown in Table 1,
YT’s Re-buffering d-sensitivity is 5%:“‘1“ (YT) = 3.63. Suppose, instead, that the range of
practical propagation delays is more appropriately represented by restricting this range D
to only include delays that are < 12ms - i.e. D = {(7,7),(12,12)} - then 53" (YT) = 2.2
where stall time varies between 7.7 and 35.4 seconds across these two configurations. This
generalization allows § to track delay-induced variation in any performance metric that
matters to applications, not just throughput.

5 An Argument for Artificial Delay

With a formal definition of d-sensitivity established, centered around the delay range D, we
now consider the use of artificial delay as a mechanism to actively modify this range. The
primary goal of introducing artificial delay is to reduce variability in the propagation delays
a flow experiences. By narrowing the effective range of delays, we aim to lower a flow’s
sensitivity to RTT differences, thereby reducing performance variability.

In this section, we introduce a simple end-system-only mechanism that can be deployed
by sending end-hosts that will improve d-sensitivity, regardless of the CCAs in use. The
idea is simple: delay processing of acknowledgments, thereby increasing the time from when
a data packet is transmitted to the time its acknowledgment is received and thus gaining
control over the propagation delay experienced by the utilized CCA. We will show that
having senders delaying the processing of acknowledgments will reduce §-sensitivity, thereby
making a set of long-lived flows’ shares of the bottleneck more consistent and predictable. If
this mechanism is standardized across senders, J-sensitivity can converge to 0. Delaying the
processing of acknowledgments runs contrary to the dogma that exists for congestion control
protocols: instinctively we want to provide feedback as quickly as possible. It is worth noting
up front that there is no added delay to data packets going from sender to receiver (i.e., the
mechanism can apply to real-time traffic as well, as we demonstrate in 5.1).

Figure 2 shows a simple model of how different delay contributors to total network RTT
impact performance®. Data packets are sent from the sending end-host to the receiving
end-host along the data path (solid blue line) data packets are delayed by network jitter,
forward propagation delay d— and congestion. Delaying data packets at the sender’s egress or
receiver’s ingress (adding artificial delay on the data path) will obviously increase data-latency
for the receiving application and thus negatively impact performance. But by delaying packet
acknowledgments (adding delay on the packet acknowledgment path), the total RTT can
be inflated without implicitly hurting the latency of actual data transfer. In this paper, we
focus on sender added artificial delay A\??? as an additional tool available to sending host to
work in conjunction with a CCA.

5.1 Viability of Artificial Delays

Figure 3 shows experimental evidence of our intuitive claim that added delay on packet
acknowledgments will not implicitly hurt application data latency (i.e., the ability to perform

5 The acknowledgment path (the dashed line in figure 2) can also experience congestive and jitter delays.
We do not include this in the figure because it does not impact the use of artificial added delay.

27:11

NINeS 2026



27:12

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

Artificial
r Aadd |- - - - - - o A fmmmmmmmm oo 1 ACK
Data Y ‘ .
—> Sender | Propagation Delay (d) Receiver —p

|
I— Jitter = d— = Congestive —I

Figure 2 RTT Delay Contributors. Data latency is accrued along the solid blue path unaffected
by added artificial delays on the dashed acknowledgment path.

No Added Delay
(baseline) * Data Latency | Total RTT
Sender Ack Delay |
(A2 = 60ms)
Sender Pkt Delay o]
(60ms)
Receiver Ack Delay |

R |
(8299 = 60ms)
Receiver Pkt Delay ]
(60ms) 5 10 20 30 40 50 60

Milliseconds

Figure 3 60 milliseconds of artificial delay added to the processing of acknowledgments (ACKs)
increases RTT with negligible impact on data-latency.

timely data delivery from sender to receiver). This experiment is setup with a socket
application that sends a packet every 1ms containing the timestamp of exiting the sending
host’s application layer and data is taken upon the receiver processing the packet at the
application level. The solid blue line shows the duration of time (in milliseconds) until the
receiving application processes the data packet and the dotted line is the duration until the
acknowledgment for the packet reaches the sender (completing the total network RTT).

These experiments are intended to represent the perspective of an application that values
real-time data transfer. The two hosts are placed on different floors of the same building with
an average 1ms delay from sender to receiver and 3ms total RT'T. There are four places where
delay can be added: sender ingress (ACK delay A?99), sender egress (packet delay), receiver
ingress (packet delay) and receiver egress (ACK delay 3299). The results of adding 60ms of
artificial delay at these four locations support our claim that compared to the baseline of no
added delay, delaying acknowledgments at either the sender (A\%99) or receiver (3%9¢) inflates
the perceived RTT without hurting sender to receiver latency. Delaying data packets has the
obvious result in delaying sender to receiver latency.

These experiments are run over a network path with a capacity that exceeds the rate
required by the application with minimal competition from competing streams. Because of
this, there is negligible difference between running this application with Cubic or BBR. This
shows that in ideal un-congested network scenarios, the addition of 60ms artificial delay does
not degrade application performance even when the natural propagation delay is small (only
3ms) and artificial delay is large (60ms). When there is congestion, the choice of CCA has
major performance implications and the use of intentional artificial delay becomes relevant.



C. lllick, M. Roger, V. Misra, D. Rubenstein

5.2 Guidelines for Adding Delay

The purpose of introducing artificial delay is to remove the impact of propagation delay
on how competing flows interoperate. This method is most suitable when the introduced
artificial delay does not meaningfully degrade an uncontested flow’s performance. Using
d-sensitivity, we can identify such cases: if a flow shows low d-sensitivity over a delay range
D in an uncontested network setting, then artificially inflated delays that remain within D
has little impact when the flow is operating alone and is thus a suitable tool for reducing
0-sensitivity when flows compete. For example, 50ms of artificial delay can have negligible
impact on file download time when a flow is bottlenecked alone but significant impact when
the capacity of the bottleneck is shared with competing traffic. Conversely, 50 ms of artificial
delay could have negative impact on short-lived flow such as loading a web-page and negligible
impact on reducing §-sensitivity in settings where this flow competes.

5.3 Removing /-sensitivity with \-proxy

Requiring existing CCAs to immediately incorporate artificial delay can be non-trivial. As
an alternative (perhaps temporary, perhaps permanent) to induce artificial delay without
changing the underlying structure of the network or the kernel’s implementation of TCP,
we propose a simple method to “trick” the CCA into thinking there are A milliseconds
of propagation delay by having the sender, artificially delay its own processing of packet
acknowledgments (use A\*??). When \ is larger than any naturally occurring propagation
delay, receiver attempts to delay their ACKs will either be subsumed within A, cause reduced
d-sensitivity, or can be easily identified as greatly exceeding A (and hence cannot be naturally
occurring). In order to achieve Ams propagation delay, we use an estimate d of minimum

Algorithm 1 \-Proxy

Init: \edd = X, WETT = time window
while connected do

diot + min(RTTy) t € WEIT

dA — dior — )\add

Update A4 = X\ — d

wait WETT

propagation delay d and then adjust added proxy delay, A%, to maintain A\ = A% + d.

This way, the total propagation delay estimate will be A milliseconds irrespective of actual
propagation delay.

The proxy protocol (Algorithm 1) repeatedly checks the minimum RTTs” to maintain
that it is A ms, making adjustments if necessary. We apply added delay A\??¢ by placing
a netem [25] queue at the sender’s ingress port for the connection. This delays packet
acknowledgments at the sender before entering the transport layer and being processed
by the sender’s CCA. In situations where all competing flows have enabled the A-proxy
mechanism, no flow has an RTT advantage and all RT'T-defined aspects of the CCA’s design
and approach to congestion will be equalized between flows.

7 This procedure is based on how BBR[12] estimates propagation delay. The measure of minrtt can be
attained via Linux kernel socket statistics [2] independent of utilized CCA, although measurement errors
may be more likely with buffer-filling CCAs (discussed in Section 7.2).

27:13

NINeS 2026



27:14

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

54 45 54
L -
BBRv1 ‘ o e BBRv1+Proxy
20

66 dmin 6 dmin 20
5 547 )
0. .
BBRv3 i 6' BBRv3+Proxy }00
20 d 20
Figure 4 §-sensitivity for D = {(d1,d2) : dmin < di < dimaz}. Shown for BBRv1 and v3 with and

6 min
without proxy solution.

dmax
dmax

dmax
dmax

3

dmin

With an accurate estimate of propagation delay d, A-proxy ensures zero d-sensitivity for
D ={(dy,...,d,) : d; < A} if all competing flows enable the proxy. Compared to the difficulty
of estimating queuing delay and network capacity, we find that propagation delay can be
estimated consistently and accurately with increased accuracy for longer lived flows. We set
A at 100ms for all of our proxy experiments in §6.

6 Case Study (BBR)

We begin with an evaluation (both emulated and real world) of introducing artificial delay
to homogeneous BBR competition. Here, we chose BBR as it is one of the most prevalent
CCAs used today and it has well documented properties of RTT-unfairness [21, 51, 44, 26].
Following this initial case study, we demonstrate the relevance extended to heterogeneous
cases.

Emulated Validation. On an Ubuntu-Linux machine, using netem [25], network
namespaces, and virtual NICs, we create emulated networks with varied propagation delay
and bottleneck link capacity to test Linux implementations of CCAs including a kernel with
BBRv3 enabled [53].

We use emulated experiments to measure d-sensitivity across a range of D in controlled
settings dictated by the CCA’s behavior. Figure 4 shows d-sensitivity for both versions of BBR
with and without the application of A-proxy. Each plot shows a visual representation of dz p-
sensitivity for the network setting Z that consists of two identically provisioned flows utilizing
the same CCA passing through a 200Mbps bottleneck and D = {(d1, d2) : dmin < d; < dimaz}-
dmin is varied on the x-axis and d,,4; is varied on the y-axis. The scale is reduced for the
two proxy-enabled plots.

d-sensitivity is computed from the results of 1600 experiments. Each experiment is
between two flows with propagation delays ranging from 6 to 54ms. We measure performance
after 60 seconds to observe how BBRv1 and BBRv3 converge to their stabilized rates



C. lllick, M. Roger, V. Misra, D. Rubenstein

Ohio
(14ms)

Utah
(48ms)

California
(69ms)

Texas
(38ms)

lowa
(28ms)

S.Carolina
(18ms)

Ontario
(16ms)

Oregon
(60ms)

BBRv1 75.2 78.3 73.7

BBRv1
+proxy

BBRv3

BBRv3
+proxy

50% 60% 70%

80%

(a) Average (percent) capacity share achieved by flows sourced from various locations when competing
with flows sourced from Virginia

v BBRv3 % Vv3+Proxy ----Proxy Avg Vv BBRvV3 x V3+Proxy ----Proxy Avg

(0]

—
x 1.0 % x X% © 25 e Fair Share---— oo

|2 < _ 8¢ 5 x¢ o xXx XX <

S %x’i )&‘3 x"""ss‘x % DR Xk x % N
So09 X% R0 MF "X XX x  XxX
"0 v X [ Pl KX* X x
8 v (] xx X
908V v €15 x  x x X
5 ‘e kI o ¥ % ¥
& 0.7, v v d 10 A
0 v v ¥ o v W o
£ v § v & v "% W
© 0.6 & . v

S

=

21 31 41 51 61 7'1 81 9:1
Delay Ratio

2:1 31 41 51 61 7'1 81 91
Delay Ratio

(b) Other performance metrics for BBRv3 experiments. Jains Fairness Index and smallest % share
of capacity allocated to one of the four competing flows.

Figure 5 Proxy effectiveness in noisy real world experiments.

irrespective to which flow starts first. The largest delay range considered in this experiment
is D = {(d1,dz) : 6 < d; < 54}. With this D we find 6(¢) = 4.58 for BBRv1; (i) = 0.27 for
proxy-enabled BBRv1; §(i) = 4.9 for BBRv3; 6(i) = 0.38 for proxy-enabled BBRv3 (note
that in these experiments §(7) is the same for i = 1,2 because all delay instances (D, D)
are repeated for (Dy, D,)). We find that proxy-enabled BBRv1 competition is, on average,
less d-sensitive than proxy-enabled BBRv3 because of v3’s larger estimation windows and
probing strategies. In both cases, proxy-enabled two flow competition provides close to equal
bandwidth allocations.

Real-world Validation. We extend our evaluation of proxy effectiveness to noisy real
world network paths. Our experiments test data flow to a subnetwork of x86-processor PCs
and ARM-processor Raspberry Pis. This subnetwork of receivers is connected to a Cisco
switch located in New York City. We establish TCP connections from Google Cloud Provider
(GCP) instances hosted in data-centers at different geographic locations. This provides our
experiment with variable propagation delays ranging from 7ms to 75ms, observed using
iproute2’s ss log command [54]. We use bursts of UDP packets on a high capacity bottleneck
(1Gbps) to provide background noise.

Our experiments consist of establishing 4 connections, two sourced from a data center
located in Virginia (that has an average 7.46ms round trip propagation delay to our receivers
in New York City) and two sourced from a data center located further away. We measure
the average share of capacity held by the two longer delayed flows when they are sourced
from different data centers. Figure 5a shows % of shared capacity achieved by the two

27:15

NINeS 2026



27:16

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

longer delayed flows. The four rows show performance for BBRv1, BBRv1+proxy, BBRv3,
BBRv3+proxy. The columns are labeled by the location the longer delayed flows are sourced
from and includes the average round trip propagation time from that location. On average,
for BBRv3, the two shorter delayed flows share 20.8% of bandwidth capacity compared to the
two longer delayed flows which share 79.2%. With proxy-enabled, the two shorter delayed
flows share 49% of capacity compared to the two longer delayed flows which share 51%.

These experiments represent a sampling of D € D, for the propagation delay range D
that spans North America. The degree of sensitivity is impacted by buffer sizes, loss rate,
and network jitter that occurs naturally and is specific to each network path. Without the
addition of the proxy, the flows sourced from Virginia which transmit over a real world
network path, have unpredictable rates that are are sensitive to the propagation delays of
the competing flows that pass through the same bottleneck and are sourced from other
locations. Proxy-enabled experiments are far more predictable, with flows sourced from
Virginia achieving consistent rates across different experiments regardless of the natural
propagation delay of the competing flows.

For comparison, Figure 5b plots commonly used metrics of performance: Jain’s Fairness
Index[30], and smallest % of shared capacity achieved among the four competing connections.
In both cases, each experiment is positioned on the x-axis by the ratio between the largest
and smallest of the four propagation delays and on the y-axis by the performance metric.
Jain’s Fairness degrades for BBRv3 as the ratio between the largest and smallest propagation
delay increases. With proxy-enabled, our real world BBRv3 experiments have an average
0.95 Jain’s Fairness. We plot the % of shared capacity achieved by the worst of the four
performers to show that proxy-enabled BBRv3 is beneficial to ensuring that all flows have
sufficient rate allocation. Compared to the ‘fair’ 25% capacity share, the worst performer
in proxy-enabled BBRv3 achieves an average 19.3% of shared capacity compared to 9.4%
without proxy-enabled.

Utilization Validation We confirm that our proxy-enabled experiments significantly
reduce d-sensitivity without degrading BBR'’s property of high network utilization. In real-
world experiments we find that proxy addition marginally increases total throughput. We
conjecture that this increase is due to larger RT'Ts making flows less affected by real-world
network jitter. Utilization is unaffected by proxy addition in long term data transfer in our
emulated tests.

7 Internet Suitability

Having shown that the proxy is able to reduce d-sensitivity in competition among competing
BBR flows, we now move to consideration of heterogeneous cases. In this section, after
demonstrating the the difficulty of reducing d-sensitivity through specific CCA adjusted
mechanisms, we demonstrate the suitability of utilizing artificial delay to reduce §-sensitivity
in heterogeneous settings and the necessity of doing so for real world application performance.

As our heterogeneous experiments are conducted in emulation (except with applications
in §7.3) we simply manipulate propagation delay and observe suitability and leave it to
future works to implement A-proxy solutions (or some new variant) in these and real-world
network settings.

7.1 Heterogeneous Delay Complexity

In this subsection, we demonstrate an important phenomenon of CCAs such as Copal[7],
Vegasl[8], PCCJ[16, 17], and Libra[37] whose design aims to converge to unique equilibrium



C. lllick, M. Roger, V. Misra, D. Rubenstein

35 ---- Copa (d; 20ms) 35 \‘.
—— Copa (d; 20ms) i
BBR (20Mbps limited) 27

-~ Copa (d; 80ms) sl
—— Copa (d; 20ms) D
BBR (20Mbps limited)

- Copa (d; 20ms)
—— Copa (d; 80ms)
BBR (20Mbps limited)

4 ---- Copa (d; 80ms)
530% it —— Copa(d:BOms)
8ot BBR (20Mbps limited):

PR

£

20 40 60 8 100 20 40 €0 80 100 0 20
Time (Seconds) Time (Seconds)

80 100 20 40 60 80 100

40 60
Time (Seconds) Time (Seconds)

Figure 6 Demonstration that even CCAs which have minimal d-sensitivity in homogeneous
networks can exhibit d-sensitivity in noisy real world environments. Shown here is Goodput achieved
by two competing Copa flows bottlenecked at a 50Mbps capacity link which is shared by a (20Mbps
max rate limited) BBR flow.

fixed points that do not depend on the individual flow’s propagation delay (i.e., their ¢-
sensitivity is close to 0). We will show that when these flows compete across a bottleneck
with alternate CCAs, then variations in their flow propagation delay (and not necessarily
variations in the competing CCA’s propagation delay) do in fact significantly alter their
convergence points (i.e., their §-sensitivity is no longer close to 0).

Our demonstration utilizes ns-3 simulation with an implementation of Copa and BBR [52]
in a simple heterogeneous network setting Z.; where two Copa flows, fi; and f5 send data
over a 50Mbps bottleneck that is shared by a BBR flow f3 which is is intended to emulate
a video streaming application that has a maximum sending rate of 20Mbs [48]. Limiting
the video flow (BBR) flow ensures that at least 30Mbps of available capacity is reserved for
the two Copa flows. In the comparable homogeneous network setting Zj,,,, which does not
include the BBR flow, the two Copa flows consistently converge to identical rates independent
of differences in their propagation delays. Figure 6 demonstrates sensitivity that occurs in
the heterogeneous setting Zp.;+ considering D = {(d1, ds, 5)} with dy, ds € {20, 80}, i.e., Copa
flow propagation delays of the two flows are any sampling of 20 and 80ms, and the BBR
flow has propagation delay of 5ms.® Each plot shows goodput achieved over time for a given
D € D. The first Copa flow (f1) is plotted with a dashed line and starts 3 seconds before the
other Copa flow fo which is plotted with a solid line. The rate limited BBR flow starts last
and is plotted with a dotted gray line. When the two Copa flows have different propagation
delays, they exhibit delay sensitivity with 19.7 vs 9.6Mbps and 21.0 vs 8.7Mbps average
goodput achieved by the 80ms vs 20ms flow respectively. From these experiments we find
07,.,,0(1) > 1.3,4 = 1,2. From experiments not shown in the figure we find Copa’s sensitivity
in the comparable homogeneous setting to be dz, . p(i) = 0,i =1,2.

A second important observation is that in a heterogeneous environment, when the Copa
flows have identical propagation delays D = {(d,d,5)} there is negligible d-sensitivity,
even when interacting with a flow that utilizes a different CCA (in this case BBR). For
instance, with this restriction, dz, ., p(2) = 0.19. This importantly shows that the J-sensitivity
exhibited by Copa is with respect to variation of delay across the Copa flows. In other words,
just having an additional CCA sharing the bottleneck (without changes to its propagation
delay) significantly increases the d-sensitivity of the Copa protocol when propagation delay
variations are only among the Copa flows! While this phenomenon is demonstrated using
Copa, the insight applies more generally across CCAs.

8 We are focusing on how Copa’s d-sensitivity is affected by heterogeneous network settings: it is sufficient
to show this with a single BBR where the different D € D need not even vary the BBR flow’s propagation
delay.

27:17

NINeS 2026



27:18

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

= s = s =, S
1.75 =3 Hybla EEE Reno
1.50 S 2.0
> >
£1.25 s
;% S1s
£ 1.00 §
@ 0.75 S 1.0
0.50
0.5
0.25
0.00 0.0
2249 = oms A24d = 50ms Dy
(a) Naive approach (b) Reducing Range

Figure 7 Reducing d-sensitivity in heterogeneous CCA competition through altering the naturally
occurring D

7.2 Simple applications of artificial delay

The goal of introducing artificial delay is to equalize propagation delays among competing
flows to neutralize §-sensitivity without requiring complex mechanisms implemented in the
CCA, as demonstrated with the proxy in §6. In this section, we consider the robustness of
this method by demonstrating that even naive approaches to adding artificial delay with
errors in reaching the point of equalization can still reliably reduce J-sensitivity and improve
consistent performance.

The naive approach to introducing artificial delay is to add a constant fixed delay to
all senders A\ regardless of the naturally occurring propagation delay of the flow. With
this method, any difference in natural propagation delays remains but the relative difference
reduces leading to a reduction in d-sensitivity. In other words, a flows sensitivity to the delay
range D can be reduced solely by uniformly adding A*¥ to all delays.

To demonstrate this phenomenon we run experiments between four competing flows
utilizing four different CCAs in an emulated test-bed following that used in §6. Figure
7a plots the d-sensitivity of each of the four flows managed by BBRv3, Hybla, Cubic, and
Reno when congested by a single 100 Mbps capacity bottleneck over the range of delays
D = {10ms < d; < 30ms} without adding artificial delay (left) and then with 50ms of added
delay (right). By adding 50ms of artificial delay, the range D that the flows operate over
effectively becomes D = {60ms < d; < 80ms}. By reducing the proportional difference of
asymmetric delay, the §-sensitivity of all four flows is reduced.

Next, we demonstrate that §-sensitivity is reduced by attempting to equalize propagation
delays between competing flows even when the intended point of equalization is missed due to
inaccurate estimates of the naturally occurring propagation delays. When all competing flows
utilize buffer-filling loss-based CCAs, for example, it may be more difficult to make estimates
of the underlying propagation delay without introducing additional mechanisms to make
such estimates. Figure 7b shows the sensitivity of four competing flows managed by CCAs
Illinois[35], Westwood[38], Cubic, and Reno when congested at a 100 Mbps bottleneck over
range of delays D; ranging from 5ms to 30ms, and Ds ranging from 35ms to 45ms to emulate
scenario where the agreed upon point of equalization was 40ms with estimation errors of
+5ms. By artificially altering the delay range from D; to Ds, each flow’s d-sensitivity is
reduced to less than 1, significantly improving performance consistency.



C. lllick, M. Roger, V. Misra, D. Rubenstein

Competing against flow f;
YT (BBRv3) 1D (Cubic) DB (BBRvl) GD (BBRv3)

OneDrive
(1D)

GoogleDyrive 37 34

flow f; 6-senitivity

(@) D ={(d1,d2) : Tms < d; < 37ms}. i.e. both flows propagation delays are between 7ms and 37ms in
each configuration.

Competing against flow f;
YT (BBRv3) 1D (Cubic) DB (BBRv1l) GD (BBRv3)

<0.1 0.2 0.7 <0.1 p®

0.4 <0.1 1.0 [®

0.3 0.8 <0.1 0.2 I
RS <0.1 0.9 0.8 <0.1 |

flow f; 6-senitivity

(b) D = {(d1,d2) : Tms < di = d2 < 37ms}. The same range as (a) above except restricted to the
configurations where competing flows have identical delays.

Figure 8 J-sensitivities of flow fi when competing against fo on a shared 50 Mbps bottleneck.

(a) shows full delay range; (b) isolates cases with equal delays. Comparing them reveals
the impact of delay asymmetry versus point of equalization.

7.3 Sensitivity in Applications

In this section, we return focus to popular application performance in practical settings and
use J-sensitivity to demonstrate that delay-induced unpredictability remains a significant
impediment to predictable performance. As the sending hosts of popular applications are
out of our control, we use artificial delay at the receiver end to control competing flow
propagation delay.

Application Experiments Setup: Continuing with the experimental topology shown
in Figure 1, we run experiments between competing simultaneous connections that are each
sourced from one four applications - YouTube (YT), OneDrive (1D), GoogleDrive (GD), and
DropBox (DB). The network configuration we use is influenced by that of [48] - setting the
bottleneck capacity to 50 Mbps which reflects the median bandwidth of more than half the
countries in the world. Similar to [48], our testbed varies propagation delay by artificially
adding a fixed delay within the round trip. While [48] adds this delay at the bottleneck,
we use NetEm [25] to add a fixed delay from all ACK departures at each receiver. The
location of our receivers are such that, as observed via pings, all four applications have
natural propagation delays below 7Tms - allowing us to emulate propagation delays that are
larger.

Note that DB is reported [43, 48, 42, 13] to utilize a variant of BBRv1 [12], 1D utilizes
a variant of Cubic[23] and both GD and YT utilize variants of BBRv3[14].° Different

9 However, applications often alter the implementations of CCAs in unknown ways [40] - furthering the
importance of evaluating actual applications over CCA mechanisms alone.

27:19

NINeS 2026



27:20

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

applications have different throughput demands: YT transmits video data in chunks utilizing
HTTP-chunking [20] where YT’s throughput need over time to serve a 4k video does not
exceed 20 Mbps but sends at rates larger than this when transmitting each chunk; file
downloads DB, GD, 1D transmit a consistent stream of data until the file download is
complete.

When considering ranges of delays (e.g. D = {(di1,d2) : do < d; < dp}), D grows
exponentially in the number of sessions as a function of the number of propagation delays
considered per flow. For tractability, our D spaces propagation delays within +5ms of one
another, and includes the boundaries d, and dp, providing a lower bound on the measure of
d-sensitivity of all delays along the continuum.

d-sensitivity reveals differences in robustness across application pairs. Figure 8a shows the

d-sensitivity of flow 1 (67 p(1)) sourced from the application indicated on the left of the table
when competing in a two flow network setting (Z) against flow 2 sourced from the application
indicated above each column in the range D = {(d1,ds) : Tms < d; < 37ms}. We choose
this range to ensure practicality as the mazximum delay observed for services tested in [48]
was 40 ms. Figure 8b shows d-sensitivity over De, - the subset of D where both competing
flows have identical propagation delays. Note that each application exhibits sensitivities that
indicate unpredictability in D with significant d-values revealing how this depends on the
CCA and workload of the competing application.
Comparison across (a) and (b) in Figure 8: While all flows show some level of sensitivity
over D in (a), the restriction to equal delay configurations in (b) highlights which effects
are due to differences in CCA alone. For instance, Dropbox’s § = 2.0 when competing with
Google Drive in (a) drops to 6 = 0.8 in (b), revealing the role of asymmetric delay.

The J-sensitivity in (a) suggests that there is need for implementing a solution such
as A-proxy and the remaining §-sensitivity in (b) would be mitigated by all agreeing on a
specific point of equalization A (larger than delays in D).

8 Discussion

The widespread adoption of BBR by content providers is evidence that application perform-
ance is valued over global notions of fairness. By adjusting the perceived network path as
opposed to the implementation of the employed CCA, artificial delay mechanisms avoid
interfering with the performance goals the CCA is designed to achieve. Artificial delay can be
applied by end-hosts regardless of the specific CCA that is being utilized. We have focused
our experiments on BBR because of its dominating popularity in applications.

Our evaluation is not exhaustive with respect to the wide range of conditions encountered
in real-world data transfers, and further investigation is required into issues such as con-
vergence speed, behavior of short-lived flows, startup dynamics, and robustness over WiFi
and cellular links with variable capacity. Nevertheless, our experiments provide evidence
that artificial delay constitutes a viable tool available to end-hosts. Many of the potential
challenges introduced by inflated propagation delay depend on the CCA in use as well as the
propagation delay level chosen as the point of equalization.

Current CCAs are generally designed to adjust their sending rates in ways that main-
tain effectiveness across a broad spectrum of propagation delays. Consequently, inflating
propagation delay to an agreed-upon value may cause certain CCAs to experience issues
with convergence speed, startup behavior, or similar dynamics. However, these difficulties
stem from the mechanisms of the CCA itself rather than from the inflated delay. Under the
assumption that all flows operate with a standardized propagation delay, modifications to



C. lllick, M. Roger, V. Misra, D. Rubenstein

existing CCAs - or the design of entirely new ones - could incorporate mechanisms specifically
tailored to that point of equalization.

Deciding in generality what constitutes the best point of equalization A is a challenging
question to answer. Larger A\ values can equalize propagation delay of a wider range of
plausible propagation delays whereas more modest A-values could capture the majority of
traffic while minimizing the delay on congestion signal feedback.

9 Related Work

Studies have shown the heterogeneous nature of the Internet [43, 41, 56], and reduced
adoption of and attention to traditionally ‘fair’ CCAs [9, 55, 10, 34]. Measuring Internet
heterogeneity has been explored by many works. [55] proposed a deployment threshold for a
new CCA based on the harm done to an existing legacy CCA over all possible networks. [9]
proposed a new point of throughput allocation inline with the respective service agreements
of competing flows and independent of the utilized CCAs. [48] was the motivation for our
application experimental setup and was the first to measure fairness (in the max-min sense)
over heterogeneous real world applications.

RTT-unfairness in BBR congestion control has been widely researched, with theoretical
analysis [50, 26] and experimental evaluations showing RT T-unfairness within BBRv1 [28,
26, 47, 33, 6], v2 [51, 4, 50], and v3 [21]. Studies have proposed delay-insensitive adaptions
to BBR that include adjustments to the congestion window[47, 4, 45] and adjustments
to pacing rates[57, 36]. Other CCAs include mechanisms for delay-insensitive equilibrium
rates [8, 31, 7, 11, 37, 17, 16]. [60] proves that CCAs cannot guarantee fairness and a fixed
queue delay at the same time. [32] shows how algorithmic mechanisms that intend to cause
delay-insensitive performance cause issues with stability and scalability.

10 Conclusion/Future Directions

We introduced the notion of §-semsitivity as a practical way to capture the degree to
which propagation delays can influence the throughput allocations of competing flows.
Unlike traditional “fairness” metrics that assess a particular bandwidth division at a single
operating point, J-sensitivity highlights how a flow’s performance might vary as propagation
delays change. Our experiments in controlled testbeds, real-world cloud environments,
and application settings reveal that many modern congestion control algorithms are highly
0-sensitive, leading to significant performance imbalance among flows that differ in their
minimum RTT.

We proposed artificial added delay mechanisms (particularly, the A-proxy) to address
this issue. By artificially inflating the RTT only on ACKSs, these mechanisms reduce or
even eliminate the dependency of throughput allocations on the true propagation delay
for long-lived flows. As a result, when flows face different propagation delays, they can
still converge to allocations unhampered by RTT bias. Our evaluations demonstrated that
A-proxy preserves high utilization and avoids implicit data-latency inflation.

Future Directions.

The notion of d-sensitivity and its mitigation through artificial added delay open several
avenues for further exploration:

27:21

NINeS 2026



27:22  Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

Adaptive Delay Insertion. While we demonstrated a static A-proxy, future designs
might automatically tune A based on live network conditions, preventing unnecessary
inflation of RT'T once allocations are stable.

Application-Aware Configurations. In practice, different flows (e.g., bulk file transfers
vs. interactive sessions) have varying QoS needs. An application-aware approach could
selectively apply artificial delay only when beneficial - balancing throughput, latency, and
user experience.

Scalable Deployments. Large-scale evaluations (e.g., across multiple data centers or
CDN edge nodes) can uncover how A-proxy behaves with dozens or hundreds of competing
flows, including potential interactions among flows using different CCAs.

Integration with Next-Generation CCAs. Artificial delay does not conflict with
evolving congestion control schemes that integrate explicit signals (e.g., ECN or in-network
telemetry). Studying how J-sensitivity can be further minimized with more sophisticated
feedback loops would extend the utility of our approach.

By exposing and mitigating J-sensitivity through a simple, end-host tool, we hope

this work spurs additional research and pragmatic solutions for managing RTT-induced
performance inequities in modern networks.

—— References

1

10

Selenium. https://www.selenium.dev/. n.d.

$s(8) — socket statistics. https://man7.org/linux/man-pages/man8/ss.8.html. Linux
manual page.

Global internet phenomena report. Technical report, Sandvine Incorporated ULC, 2023. URL:
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-pheno
mena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-you
tube-301723445 . html.

Akshita Abrol, Purnima Murali Mohan, and Tram Truong-Huu. Fairtt: An empirical approach
for enhanced rtt fairness and bottleneck throughput in bbr. arXiv preprint arXiv:2403.19973,
2024.

Ian F Akyildiz, Ozgiir B Akan, Chao Chen, Jian Fang, and Weilian Su. Interplanetary internet:
state-of-the-art and research challenges. Computer Networks, 43(2):75-112, 2003.

Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation in end-to-end con-
gestion control. In Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM
22, page 177-192, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3544216.3544223.

Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based congestion control for the
internet. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 329-342, Renton, WA, April 2018. USENIX Association. URL: https:
//www.usenix.org/conference/nsdil8/presentation/arun.

L.S. Brakmo and L.L. Peterson. Tcp vegas: end to end congestion avoidance on a global
internet. IEEE Journal on Selected Areas in Communications, 13(8):1465-1480, 1995. doi:
10.1109/49.464716.

Lloyd Brown, Albert Gran Alcoz, Frank Cangialosi, Akshay Narayan, Mohammad Alizadeh,
Hari Balakrishnan, Eric Friedman, Ethan Katz-Bassett, Arvind Krishnamurthy, Michael
Schapira, and Scott Shenker. Principles for internet congestion management. In Proceedings
of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24, page 166—-180, New York,
NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3651890.3672247.
Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind Krishnamurthy, Aurojit Panda, Justine
Sherry, and Scott Shenker. How i learned to stop worrying about cca contention. In Proceedings


https://www.selenium.dev/
https://man7.org/linux/man-pages/man8/ss.8.html
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://www.prnewswire.com/news-releases/sandvines-2023-global-internet-phenomena-report-shows-24-jump-in-video-traffic-with-netflix-volume-overtaking-youtube-301723445.html
https://doi.org/10.1145/3544216.3544223
https://www.usenix.org/conference/nsdi18/presentation/arun
https://www.usenix.org/conference/nsdi18/presentation/arun
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://doi.org/10.1145/3651890.3672247

C. lllick, M. Roger, V. Misra, D. Rubenstein

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

of the 22nd ACM Workshop on Hot Topics in Networks, HotNets '23, page 229-237, New York,
NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3626111.3628204.
Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp enhancement for heterogeneous networks.
Int. J. Satell. Commun. Netw., 22(5):547-566, September 2004. doi:10.1002/sat.799.
Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.
Bbr: Congestion-based congestion control. Communications of the ACM, 60(2):58-66, 2017.
Neal Cardwell, Yuchung Cheng, Kevin Yang, David Morley, Soheil Hassas Yeganeh, Priyaranjan
Jha, Yousuk Seung, Van Jacobson, Ian Swett, Bin Wu, and Victor Vasiliev. Bbrv3 overview
and google deployment. Slides, IETF 119 Congestion Control Working Group Meeting, March
2024. IETF 119: Brisbane, March 21, 2024. URL: https://datatracker.ietf.org/meeting
/119/materials/slides-119-ccwg-bbrv3-overview-and-google-deployment-00.

Neal Cardwell and Google BBR Team. BBRv3: algorithm bug fixes and public internet
deployment. Technical report, Internet Engineering Task Force (IETF), 2023.

Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Computer Networks and ISDN systems, 17(1):1-14, 1989.
Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira. PCC: Re-
architecting congestion control for consistent high performance. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 395-408, Oakland, CA,
May 2015. USENIX Association. URL: https://wuw.usenix.org/conference/nsdil5/tec
hnical-sessions/presentation/dong.

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael
Schapira. PCC vivace: Online-Learning congestion control. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), pages 343-356, Renton, WA, April
2018. USENIX Association. URL: https://www.usenix.org/conference/nsdil8/presentat
ion/dong.

Nandita Dukkipati and Nick McKeown. Why flow-completion time is the right metric
for congestion control. SIGCOMM Comput. Commun. Rev., 36(1):59-62, January 2006.
d0i:10.1145/1111322.1111336.

Eric Gavaletz and Jasleen Kaur. Decomposing rtt-unfairness in transport protocols. In 2010
17th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN), pages 1-6. IEEE,
2010.

Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate limiting
YouTube video streaming. In 2012 USENIX Annual Technical Conference (USENIX ATC
12), pages 191-196, Boston, MA, June 2012. USENIX Association. URL: https://www.usen
ix.org/conference/atcl2/technical-sessions/presentation/ghobadi.

Jose Antonio Gomez Gaona, Elie Kfoury, Jorge Crichigno, and Gautam Srivastava. Evaluating
tcp bbrv3 performance in wired broadband networks. Available at SSRN 4594375, 2023.
Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana, Mohammad Alizadeh,
and Hari Balakrishnan. Elasticity detection: A building block for internet congestion control.
In Proceedings of the ACM SIGCOMM 2022 Conference, pages 158-176, 2022.

Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed tcp variant.
SIGOPS Oper. Syst. Rev., 42(5):64-74, jul 2008. doi:10.1145/1400097.1400105.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W Moore, Gianni
Antichi, and Marcin Wdjcik. Re-architecting datacenter networks and stacks for low latency
and high performance. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pages 29-42, 2017.

Stephen Hemminger. Network emulation with netem. Open Source Development Lab, April
2005. Available online: http://devresources.linux-foundation.org/shemminger/netem/L
CA2005_paper.pdf.

Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of bbr congestion
control. In 2017 IEEE 25th International Conference on Network Protocols (ICNP), pages
1-10, 2017. doi:10.1109/ICNP.2017.8117540.

27:23

NINeS 2026


https://doi.org/10.1145/3626111.3628204
https://doi.org/10.1002/sat.799
https://datatracker.ietf.org/meeting/119/materials/slides-119-ccwg-bbrv3-overview-and-google-deployment-00
https://datatracker.ietf.org/meeting/119/materials/slides-119-ccwg-bbrv3-overview-and-google-deployment-00
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
https://doi.org/10.1145/1111322.1111336
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi
https://doi.org/10.1145/1400097.1400105
http://devresources.linux-foundation.org/shemminger/netem/LCA2005_paper.pdf
http://devresources.linux-foundation.org/shemminger/netem/LCA2005_paper.pdf
https://doi.org/10.1109/ICNP.2017.8117540

27:24

Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Van Jacobson. Congestion avoidance and control. ACM SIGCOMM computer communication
review, 18(4):314-329, 1988.

Benedikt Jaeger, Dominik Scholz, Daniel Raumer, Fabien Geyer, and Georg Carle. Reprodu-
cible measurements of tcp bbr congestion control. Computer Communications, 144, 05 2019.
doi:10.1016/j.comcom.2019.05.011.

Jeffrey Jaffe. Bottleneck flow control. IEEE Transactions on Communications, 29(7):954-962,
1981.

R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimination for
resource allocation in shared computer system. Technical report, Eastern Research Laboratory,
Digital Equipment Corp., 1984.

Cheng Jin, David X Wei, and Steven H Low. Fast tcp: motivation, architecture, algorithms,
performance. In IEEE INFOCOM 2004, volume 4, pages 2490-2501. IEEE, 2004.

Frank Kelly. Fairness and stability of end-to-end congestion control. Furopean journal of
control, 9(2-3):159-176, 2003.

Geon-Hwan Kim and You-Ze Cho. Delay-aware bbr congestion control algorithm for rtt
fairness improvement. IEEE Access, 8:4099-4109, 2020. doi:10.1109/ACCESS.2019.2962213.
Tke Kunze, Jan Riith, and Oliver Hohlfeld. Congestion control in the wild—investigating content
provider fairness. IEEE Transactions on Network and Service Management, 17(2):1224-1238,
2020. doi:10.1109/TNSM.2019.2962607.

Shao Liu, Tamer Bagar, and R. Srikant. Tcp-illinois: a loss and delay-based congestion control
algorithm for high-speed networks. In Proceedings of the 1st International Conference on
Performance Evaluation Methodolgies and Tools, valuetools ’06, page 55—es, New York, NY,
USA, 2006. Association for Computing Machinery. doi:10.1145/1190095.1190166.

Shiyao Ma, Jingjie Jiang, Wei Wang, and Bo Li. Fairness of congestion-based congestion
control: Experimental evaluation and analysis. arXiv preprint arXiv:1706.09115, 2017.
Gustavo Marfia, Claudio Palazzi, Giovanni Pau, Mario Gerla, M. Y. Sanadidi, and Marco
Roccetti. Tcp libra: exploring rtt-fairness for tcp. In Proceedings of the 6th International
IFIP-TC6 Conference on Ad Hoc and Sensor Networks, Wireless Networks, next Generation
Internet, NETWORKING’07, page 1005-1013, Berlin, Heidelberg, 2007. Springer-Verlag.
Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren Wang. Tcp westwood:
Bandwidth estimation for enhanced transport over wireless links. In Proceedings of the
7th Annual International Conference on Mobile Computing and Networking, MobiCom ’01,
page 287-297, New York, NY, USA, 2001. Association for Computing Machinery. doi:
10.1145/381677.381704.

Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic behavior
of the tcp congestion avoidance algorithm. ACM SIGCOMM Computer Communication
Review, 27(3):67-82, 1997.

Ayush Mishra, Sherman Lim, and Ben Leong. Understanding speciation in quic congestion
control. In Proceedings of the 22nd ACM Internet Measurement Conference, IMC 22, page
560-566, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/35
17745 .3561459.

Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an eye on congestion
control in the wild with nebby. In Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM 24, page 136-150, New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3651890.3672223.

Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong. The
great internet tcp congestion control census. Proc. ACM Meas. Anal. Comput. Syst., 3(3),
December 2019. doi:10.1145/3366693.

Ayush Mishra, Wee Han Tiu, and Ben Leong. Are we heading towards a bbr-dominant internet?
In Proceedings of the 22nd ACM Internet Measurement Conference, IMC 22, page 538-550, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3517745.3561429.


https://doi.org/10.1016/j.comcom.2019.05.011
https://doi.org/10.1109/ACCESS.2019.2962213
https://doi.org/10.1109/TNSM.2019.2962607
https://doi.org/10.1145/1190095.1190166
https://doi.org/10.1145/381677.381704
https://doi.org/10.1145/381677.381704
https://doi.org/10.1145/3517745.3561459
https://doi.org/10.1145/3517745.3561459
https://doi.org/10.1145/3651890.3672223
https://doi.org/10.1145/3366693
https://doi.org/10.1145/3517745.3561429

C. lllick, M. Roger, V. Misra, D. Rubenstein

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Aarti Nandagiri, Mohit P. Tahiliani, Vishal Misra, and K. K. Ramakrishnan. Bbrvl vs
bbrv2: Examining performance differences through experimental evaluation. In 2020 IEEFE
International Symposium on Local and Metropolitan Area Networks (LANMAN, pages 1-6,
2020. doi:10.1109/LANMAN49260.2020.9153268.

Charles Kihungi Njogu, Wang Yang, Humphrey Waita Njogu, and Adrian Bosire. Bbr-with

enhanced fairness (bbr-efra): A new enhanced rtt fairness for bbr congestion control algorithm.

Computer Communications, 200:95-103, 2023.

Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling tcp throughput: A
simple model and its empirical validation. In Proceedings of the ACM SIGCOMM’98 conference
on Applications, technologies, architectures, and protocols for computer communication, pages
303-314, 1998.

Wansu Pan, Haibo Tan, Xiru Li, and Xiaofeng Li. Improved rtt fairness of bbr congestion
control algorithm based on adaptive congestion window. FElectronics, 10(5), 2021. URL:
https://www.mdpi.com/2079-9292/10/5/615, doi:10.3390/electronics10050615.

Adithya Abraham Philip, Rukshani Athapathu, Ranysha Ware, Fabian Francis Mkocheko,
Alexis Schlomer, Mengrou Shou, Zili Meng, Srinivasan Seshan, and Justine Sherry. Prudentia:
Findings of an internet fairness watchdog. In Proceedings of the ACM SIGCOMM 2024
Conference, pages 506—520, 2024.

Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine Sherry, and Vyas
Sekar. Revisiting tcp congestion control throughput models & fairness properties at scale. In
Proceedings of the 21st ACM Internet Measurement Conference, IMC 21, page 96-103, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3487552.3487834.
Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid. Model-based insights
on the performance, fairness, and stability of bbr. In Proceedings of the 22nd ACM Internet
Measurement Conference, IMC ’22, page 519-537, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3517745.3561420.

Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud, Won-Kyeong Seo, and You-Ze Cho.
Understanding of bbrv2: Evaluation and comparison with bbrvl congestion control algorithm.
IEEE Access, 9:37131-37145, 2021. doi:10.1109/ACCESS.2021.3061696.

SoonyangZhang. ns3-tcp-bbr, 2021-. URL: https://github.com/SoonyangZhang/ns3-tcp-b
br.

The Google BBR Team. bbr. https://github.com/google/bbr, 2024.

Utilities for controlling TCP/IP networking and traffic project. iproute2. https://man7.org
/linux/man-pages/man8/ip.8.html, 2011.

Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine Sherry. Beyond jain’s
fairness index: Setting the bar for the deployment of congestion control algorithms. In
Proceedings of the 18th ACM Workshop on Hot Topics in Networks, pages 17-24, 2019.
Ranysha Ware, Adithya Abraham Philip, Nicholas Hungria, Yash Kothari, Justine Sherry, and
Srinivasan Seshan. Ccanalyzer: An efficient and nearly-passive congestion control classifier. In
Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24, page 181-196, New
York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3651890.3672255.
Shuang Yang, Yuquan Tang, Wansu Pan, Huadong Wang, Dandan Rong, and Zhirong Zhang.
Optimization of bbr congestion control algorithm based on pacing gain model. Sensors,
23(9):4431, 2023.

Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. Axiomatizing congestion
control. In Abstracts of the 2019 SIGMETRICS/Performance Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’19, page 51-52, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3309697.3331501.
Bo Zhang, TS Eugene Ng, Animesh Nandi, Rudolf Riedi, Peter Druschel, and Guohui Wang.
Measurement based analysis, modeling, and synthesis of the internet delay space. In Proceedings
of the 6th ACM SIGCOMM conference on Internet measurement, pages 85-98, 2006.

27:25

NINeS 2026


https://doi.org/10.1109/LANMAN49260.2020.9153268
https://www.mdpi.com/2079-9292/10/5/615
https://doi.org/10.3390/electronics10050615
https://doi.org/10.1145/3487552.3487834
https://doi.org/10.1145/3517745.3561420
https://doi.org/10.1109/ACCESS.2021.3061696
https://github.com/SoonyangZhang/ns3-tcp-bbr
https://github.com/SoonyangZhang/ns3-tcp-bbr
https://github.com/google/bbr
https://man7.org/linux/man-pages/man8/ip.8.html
https://man7.org/linux/man-pages/man8/ip.8.html
https://doi.org/10.1145/3651890.3672255
https://doi.org/10.1145/3309697.3331501

27:26  Making Congestion Control Algorithms Insensitive to Underlying Propagation Delays

60 Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. Ecn or delay: Lessons learnt
from analysis of dcqen and timely. In Proceedings of the 12th International on Conference on
Emerging Networking EXperiments and Technologies, CONEXT ’16, page 313-327, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2999572.2999593.


https://doi.org/10.1145/2999572.2999593

	1 Introduction
	2 Q&A
	2.1 Performance Concerns
	2.2 Network-Wide Adoption
	2.3 Implementation Concerns

	3 CCA Goals: Beyond Fairness
	3.1 Propagation Delay Impacts Application Performance

	4 Delay-sensitivity (not Fairness!)
	4.1 delta-sensitivity
	4.1.1 Walking through delta-sensitivity: A simple 2 flow example
	4.1.2 Interpreting High delta-sensitivity
	4.1.3 Multi-metric delta-sensitivity definition


	5 An Argument for Artificial Delay
	5.1 Viability of Artificial Delays
	5.2 Guidelines for Adding Delay
	5.3 Removing d-sensitivity with lambda-proxy

	6 Case Study (BBR)
	7 Internet Suitability
	7.1 Heterogeneous Delay Complexity
	7.2 Simple applications of artificial delay
	7.3 Sensitivity in Applications

	8 Discussion
	9 Related Work
	10 Conclusion/Future Directions

