
Running Distributed Systems Like Clockwork
Karan Newatia
University of Pennsylvania, USA

Robert Gifford
University of Pennsylvania, USA

Qingjie Lu
University of Pennsylvania, USA

Andreas Haeberlen
University of Pennsylvania, USA

Linh Thi Xuan Phan
University of Pennsylvania, USA

Abstract
Distributed Systems are commonly built using a set of standard assumptions: we assume that
message delays are unbounded, that any packet can be lost in the network, and that clocks cannot
be closely synchronized. On the one hand, these conservative assumptions result in robust systems
that can operate reliably in a wide variety of conditions. On the other hand, they also force the
system to do a lot of complex ad-hoc coordination and thus limit the performance it can achieve.

In this paper, we take a look at what lies beyond this standard model. We observe that, on
modern hardware in a single-tenant data center, distributed systems are able to closely coordinate
and essentially “run like clockwork” with very little effort. If we are willing to additionally rule out
some worst-case failure scenarios, this results in a large performance improvement, both in practice
and even in theory. We demonstrate this effect using state-machine replication (SMR) as a case
study: our SMR protocol, Watchmaker, exceeds the throughput of state-of-the-art algorithms by
two orders of magnitude, and it requires only half as many replicas to tolerate the same number of
faults.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases State-machine replication, distributed systems, data centers, clock synchron-
ization, fault tolerance, synchrony

Digital Object Identifier 10.4230/OASIcs.NINeS.2026.26

Funding This work was supported in part by NSF grants CNS-1955670, CNS-2111688, and CCF-
2326606.

Acknowledgements We thank our shepherd, Scott Shenker, and the anonymous reviewers for their
thoughtful comments and suggestions.

1 Introduction

Distributed systems are typically built using a standard set of assumptions: 1) the network
is unreliable and can lose, or arbitrarily delay, any packet; and 2) nodes can run at any speed
relative to each other and do not have access to synchronized clocks. This asynchronous
model results in robust systems that can work correctly in a variety of conditions.

However, this robustness comes at a price: without a reliable means of communication
or a common notion of time, coordination across nodes is difficult. Seemingly simple tasks,
such as ordering events, require elaborate and costly protocols; others, such as distinguishing
faulty ones from merely slow ones, are provably impossible. This price is widely accepted

© Karan Newatia, Robert Gifford, Qingjie Lu, Andreas Haeberlen, and Linh Thi Xuan Phan;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 26; pp. 26:1–26:31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:knewatia@seas.upenn.edu
https://orcid.org/0009-0003-6219-340X
mailto:rgif@seas.upenn.edu
https://orcid.org/0000-0003-2937-6215
mailto:andylu@seas.upenn.edu
https://orcid.org/0009-0003-8050-9471
mailto:ahae@cis.upenn.edu
https://haeberlen.cis.upenn.edu/
https://orcid.org/0000-0002-3271-8354
mailto:linhphan@seas.upenn.edu
https://www.cis.upenn.edu/~linhphan/
https://orcid.org/0000-0002-3458-7511
https://doi.org/10.4230/OASIcs.NINeS.2026.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

26:2 Running Distributed Systems Like Clockwork

and rarely questioned today – it is seen as simply the cost of doing business in distributed
systems. But the price is and remains high, so it seems reasonable to examine whether
distributed systems are still getting their money’s worth in return.

Do distributed systems need the robustness that the asynchronous model affords? There
are indeed many that do! For instance, the Domain Name System shares its links with other
traffic that might spike at any time, so it is perfectly reasonable to assume that any packet
could potentially be lost; its servers might have other workloads too, so it makes a lot of
sense to assume that they could run at any speed; and their clocks could be of low quality or
be set inaccurately, so it does seem unwise to rely on them for correctness. But would our
answers be the same, say, in a modern single-tenant data center? Here, we can control what
traffic is being sent and when [87]; we can know, and control, the software and workload
that runs on each node; and we can use high-quality OCXO-based clocks. Even running
some extra wires from each node to a shared oscillator, for frequent clock synchronization,
does not seem out of the question.

One way for systems to do better in such a controlled environment is to optimize for
a “well-behaved” common case, in which the clocks are mostly in sync, packets are rarely
lost, and there is little interference from other workloads. Such systems have in fact been
built [88], and they do offer better performance. However, these systems are still fundament-
ally asynchronous and thus remain subject to the all the lower bounds, impossibilities, and
complexities of the asynchronous model. For instance, SMR still requires 2f + 1 replicas
because we may still need to rely on a quorum if and when the system is not so well-behaved.

Our key observation is that such controlled settings are almost synchronous and thus sit
right at the edge of an enormous performance cliff: if they really were synchronous, certain
impossibilities would no longer apply (no FLP [37]!), lower bounds would improve (agreement
with f + 1 replicas!), and some complex problems would have trivial solutions. And the
synchronous zone seems almost within our reach! Imagine for a moment a hypothetical data
center in which everything we can control has been controlled: the machines are in the same
rack, they are running a single workload whose timing we thoroughly understand, they are
connected to a dedicated switch and closely coordinate their transmissions, and we have
strung extra wires to connect them all to a shared oscillator, so they can closely synchronize
their clocks. This rules out almost all of the complications that the asynchronous model was
meant to handle. The only one that is left is occasional physical-layer packet loss.

What would it take to bridge the gap? At first glance, it seems to require an assumption
that packets are never lost, which is unrealistic. But in fact, occasional packet losses are not
a problem – just like a limited number of node failures is not a problem for fault-tolerance
techniques. All it would take is a limit on the worst-case failure pattern: if we send the
same packet again and again over an otherwise working link, are we assuming that it could
be lost every single time – or are we willing to assume that at most k such packets can be
lost in a row, much like fault-tolerance techniques assume that at most f nodes can fail? If
so, this is enough to unlock most of the benefits of the synchronous model.

In this paper, we use state-machine replication (SMR) as a case study to explore what
happens when we add such an assumption. We introduce a quasi-synchronous model that is
meant to describe a modern single-tenant data center, with the additional assumption that
at most k consecutive packets can be lost on an otherwise working link. We then describe
an initial SMR protocol, Watchmaker, for this model. Watchmaker uses the additional as-
sumption to closely coordinate between the replicas, so they can indeed “run like clockwork”.
Thus, Watchmaker achieves a throughput that is two orders of magnitude higher, and tail
latencies that are two orders of magnitude lower, than comparable SMR protocols. It also

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:3

Figure 1 Scenario.

requires only half as many replicas.
To us, Watchmaker is part of a larger point: the standard (asynchronous) model for

distributed systems is not the only possible choice, and it is not necessarily the best fit for
all possible deployments. We think the quasi-synchronous model is an interesting alternative
for modern single-tenant data centers, but more than that, it is a reminder that there are
alternatives – and Watchmaker illustrates just how much such alternatives can influence the
properties of the system. Exploring other models, and their consequences for other types of
algorithms, could be an interesting avenue for future work. In summary, our contributions
are:

the quasi-synchronous model (Section 2);
the Watchmaker algorithm (Section 3);
a prototype implementation of Watchmaker (Section 4); and
an experimental evaluation of Watchmaker (Section 5).

We discuss related work in Section 6 and present our conclusions in Section 7.

2 Overview

For concreteness, we assume that an SMR system, when deployed in such a carefully-
controlled setting, would look something like Figure 1. A critical service S is implemented
as a deterministic state machine; there is a set of clients, who can generate requests for the
state machine to execute, and a set of N replicas that each run a copy of S. The clients are
connected to the replicas by an access network, about which we make no special assump-
tions. The replicas are connected to a replica network to which they have exclusive access,
and additionally to a special clock network that connects them to a set of C clocks, which
provide periodic pulses that the replicas use to synchronize their local clocks. As usual in
SMR, our goals are that 1) the clients should see consistent responses that could have been
sent by a single instance of S, and that 2) for some 1 ≤ f < N and 1 ≤ c < C, the service as
a whole should remain available even when up to f of the replicas and up to c of the clocks
fail by crashing.

Following Fred Schneider’s definition [92], a valid SMR protocol has to provide the fol-
lowing two properties:

Agreement: Every non-faulty state machine replica receives every request.
Order: Every non-faulty state machine replica processes the requests it receives in the
same order.

If the state machine S is deterministic and all replicas start in the same state, this is sufficient
to ensure that the responses from the non-faulty replica will be identical.

NINeS 2026

26:4 Running Distributed Systems Like Clockwork

100

102

104

106

108

1010

 5 10 15 20 25

O
b
s
e
rv
a
ti
o
n
s

Packet interarrival time (µs)

0

20M

40M

60M

80M

100M

-10 -5 0 5 10

O
b
s
e
rv
a
ti
o
n
s

Offset (µs)

Figure 2 Stability of packet timing (left) and clock synchronization accuracy (right).

2.1 Physical-layer loss is rare
Is it even plausible to assume a bound on the number of consecutive packet losses on an
otherwise working link? To approach this question, we did a little experiment: we connected
two Dell PowerEdge R440 servers with Intel X710 NICs to an optical 10 Gbps Ethernet
switch (a Juniper EX4550-32F-AFI). One was configured to send a steady stream of 1,500-
byte packets, each with a sequence number and a predictable bit pattern, at a rate of
66K packets per second, or about 800 Mbps; the machine was configured to receive the
packets, check the bit pattern and the sequence number, and report any omissions or signs
of corruption. To rule out kernel issues, we wrote a custom NIC driver and ran our code
directly on the hardware. During a 24-hour run, 6 billion packets were sent. Figure 2
(left) shows that the packet timing was very stable: inter-arrival times were consistently
between 13 µs and 17 µs. The number of omissions or corruptions we saw during this time
was exactly zero.

This is not surprising: data-center hardware is amazingly reliable these days. When a
link is working, packet loss is almost always due to queue overflow, which can be avoided,
e.g., with Infiniband or through careful coordination [6, 87]. Of course, link and switch
failures can and do occur, and individual packets are still lost occasionally: in a small data
center with 100 fully-utilized 10 Gbps links and the 10−8 packet loss rate from the Ethernet
standard, one would expect roughly one loss per second in the entire data center.

2.2 Clock can be closely synchronized
In our setup, is it possible to synchronize clocks well enough that we can rely on them for
correctness? Historically, both clock chips and clock synchronization protocols have had
a reputation of being unreliable, but both have come a long way: modern oven-controlled
crystal oscillators (OCXOs) can achieve a frequency stability of ±1 ppb or less [95], which
corresponds to a worst-case drift of 86µs in an entire day, and modern synchronization
protocols can achieve amazing accuracy: Sundial [70] offers a bound of ±0.1µs, Huygens [40]
gets to tens of nanoseconds, while Firefly [78] and Synchronous Ethernet [48] reach sub-10
nanoseconds.

In our example setting from Figure 1, we have made the problem even easier: the ma-
chines have access to a shared pulse (say, 10kHz) and can use it to periodically synchronize
their clocks; thus, their internal clocks need only be precise enough to cover the 100µs

between pulses. In practice, this is a little harder than it sounds, because commodity serv-
ers do not have a “clock port” that such a pulse can be fed into. However, we did a second
experiment to check whether an existing pin – in our case, the CTS pin on a server’s RS-232
port – can be used instead. We used a Siglent SDG1032X function generator to generate a

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:5

Table 1 Assumptions A1–A10 in the quasi-synchronous model (left) and idealized equivalents
A1’–A7’ (right) we use for ease of exposition. A11 + A12 are standard for SMR.

Assumption Quasi-synchronous Fully sync.
Channel A1 Links+switches Broadcast A1’
Prop. delays A2 Any, but known Uniform A2’
Link capacity A3 Finite+known Infinite A3’
Corrupt. loss A4 ≤ k in a row No A4’
Link failures A5 Yes No A5’
Partitions A6 Yes No A6’
Clocks A7 Diff. ≤ Φ Identical A7’
Queue lengths A8 Finite but known
Topology A9 Known
Cross traffic A10 Absent
Node faults A11 Crash
Node IDs A12 Available

10kHz pulse, connected it to the CTS pin, and measured the number of ticks on the CPU’s
cycle counter between consecutive pulses. Figure 2 (right) shows our results: all of the
values were within ±3 µs. In absolute terms, this precision is not great – the CTS pin has
to be read with our Xeon CPU’s inb instruction, which is not optimized and can take a few
microseconds. But the key point is that this bound is rock-solid and can be relied upon for
correctness. Regular clock synchronization protocols use regular network packets, so there
is always a question mark behind their precision: what if spiky cross traffic throws off their
estimates? But with dedicated wires, all the machines truly see the same pulse at the same
time.

2.3 The quasi-synchronous model
What assumptions can we make about such a closely controlled system? For the purposes
of this paper, we choose ten assumptions A1–A10 (see Table 1); we will refer to these
collectively as the quasi-synchronous model. At a high level, these assumptions imply the
existence of bounds ∆ and Φ on message latencies and clock discrepancies, respectively;
the difference is that we do not simply assume these bounds but rather that the system
has the means to guarantee them. If clocks are synchronized (A7) and propagation delays
(A2), link capacities (A3), queue lengths (A8), and the network topology (A9) are all known,
the nodes can carefully coordinate their transmissions to prevent queue drops and bound
queueing delays. If the network will not lose more than k consecutive packets from the same
sender (A4), an algorithm could theoretically ensure reliable delivery simply by sending each
packet k+1 times. (Of course Watchmaker does not do this – it would be extremely wasteful.)
Assumptions A5 and A6 account for the possibility that the network might partition and
that links or switches might fail.

Notice that, despite the similarity to the synchronous model, proofs for the synchronous
model will not necessarily hold in the quasi-synchronous model. One obvious reason is that
most liveness guarantees can only hold in the absence of partitions, but there is also a more
subtle reason: the synchronous model does not limit how many messages can be sent, so
its bound ∆ can only hold for networks with infinite capacity. Since we assume a more
realistic network with finite capacity, most proofs would need to additionally assume that
the capacity is sufficiently high.

NINeS 2026

26:6 Running Distributed Systems Like Clockwork

1: replicas : set of nodes
2: cur : node = replicas.rand()
3: active : set of (int,request)
4: procedure sendRequest(req)
5: now = getTime()
6: setTimeout(now+T, now)
7: pending.add(now,req);
8: send(cur,(now,req))
9: procedure receive(orig,msg)

10: (ts,resp) = msg
11: if active.contains(ts,_) then
12: deliver(resp)
13: pending.remove(ts,_)
14: procedure timeout(x)
15: cur = replicas.random()
16: setTimeout(getTime()+T, x)
17: send(cur,pending.get(x)))

1: procedure receive(src,msg)
2: if isClient(src) then
3: (ts,req) = msg
4: broadcast((src,ts,req))
5: else
6: (orig,ts,req) = msg
7: resp = execute(req)
8: send(orig,(ts,resp))

Figure 3 Client side (left) and server side (right) of a fully synchronous SMR algorithm (using
assumptions A1’–A7’).

3 Watchmaker

How do these different assumptions affect algorithm design, and the guarantees that can
be given? To illustrate this, we now present Watchmaker, an SMR protocol for the quasi-
synchronous model. Since our goal is to explain the design approach and to highlight the
differences between the quasi-synchronous model and the synchronous one, we do not just
present the completed algorithm but rather derive it in several steps, starting from a fully-
synchronous strawman.

3.1 Fully synchronous protocol
We begin by temporarily replacing the quasi-synchronous assumptions A1–A7 in Table 1
with assumptions A1’–A7’– that is, we assume a reliable, totally-ordered broadcast channel,
clocks are exactly synchronized, and link failures and partitions cannot occur. This is one
of several ways to describe the fully-synchronous model; it is sometimes also described in
terms of synchronous “rounds”, where all messages sent in one round are also received in
that round [33, §3], but these formulations are roughly equivalent.

In this model, SMR is almost trivial: when a replica receives a request from a client, it
can simply broadcast it. The replicas can then execute the requests in the order they are
received, and respond to the client. For concreteness, we show pseudocode in Figure 3; this
will be our baseline for modifications. Agreement and ordering hold simply because of the
broadcast channel, and the state machine will remain available as long as at most f ≤ N −1
of the replicas fail.

3.2 Finite capacities
What happens if we make the more realistic assumption that the capacity of the broadcast
channel is finite but known (A3)? In this case, the replicas cannot simply broadcast requests
whenever they arrive, since they might fill up queues in the network and cause packet loss.
However, the replicas can use the synchronized clocks to coordinate their transmissions –
e.g., using a form of TDMA, where each replica is given a fixed set of “transmission slots”
to use.

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:7

1: sendWait : fifoQueue ▷ Client requests waiting to be broadcast
2: execWait : priorityQueue ▷ Requests waiting to be executed
3: procedure init
4: timeout(0)
5: procedure receive(src,msg)
6: (src,ts,req) = msg
7: if isClient(src) then
8: sendWait.append(src,ts,req);
9: else execWait.insert(ts,msg)

10: procedure timeout(x)
11: if sender[x mod L]=myID then
12: broadcast(sendWait.empty() ? sendWait.pop() : ⊥)
13: tSafe = getTime() - maxDelay ▷ maxDelay is 0 in 3.2, ∆ in 3.3
14: while execWait.minPrio() ≤ tSafe do
15: (orig,ts,req) = execWait.pop()
16: resp = execute(req)
17: send(orig,(ts,resp))
18: setTimeout(getTime()+σ, x+1)

Figure 4 Server-side algorithm for finite network capacity.

Figure 4 shows a modified server-side algorithm for this scenario. (The client side from
Figure 3 (left) will continue to work). Instead of broadcasting each request as it arrives, the
replicas now append the requests to the sendWait queue, and broadcast as many as possible
when the next transmission slot arrives. For simplicity, we assume here that there is a fixed
transmission schedule that consists of L packet-sized slots, with σ being the transmission
time for a single packet on the channel, and slot i being assigned to node sender[i]. The
concrete schedule does not matter, as long as each replica gets at least one slot. When
transmissions arrive, they are put into the execWait set and are executed when the next
slot timer hits. This set, and the maxDelay constant, will become important later; for now,
we set maxDelay=0.

Agreement continues to hold because, although queue drops are now possible theoretic-
ally, they cannot occur in practice because transmissions are coordinated and there is no
cross traffic (A10) that could fill up the queues. Ordering holds because the packets are
executed in the order of the timestamps they contain, perhaps using the node IDs (A12) as
a tie breaker.

3.3 Point-to-point links
Next, we replace the broadcast channel with ordinary links and switches (A1) and allow
arbitrary propagation delays (A2). This creates a new complication: although we are still
sending broadcast packets, the network will send these packets along a spanning tree and
create copies at each internal node. Thus, if two nodes each broadcast a packet, these packets
may arrive on different nodes in a different order, and their copies may be queued in front of
each other on some paths, if they happen to be in the same queue at roughly the same time.
To maintain agreement, we must now choose the transmission schedules carefully, so that
queue overflows cannot occur; to maintain ordering, we can no longer execute each request
immediately upon arrival; rather, we need to wait until we can be sure that no packet with
an earlier timestamp could still arrive.

We can find a suitable set of transmission schedules by essentially simulating the network:
we can inject simulated packets according to each node’s schedule, and we can then simulate
what happens in each queue and on each link. Figure 5 illustrates this process with a simple
example with three nodes and the non-uniform latencies shown on the left. The candidate

NINeS 2026

26:8 Running Distributed Systems Like Clockwork

Tr
an

sm
it A1 A2 A3

B1 B2 B3

C1 C2 C3C

B

A

Re
ce

iv
e B1 B2 C1

A4

A2A1

A1C

B

A

B4

C4

A3

B3

C1

B1 A2 B2

C2

C2

Schedule

Steady state

* *
Time0 1 2 3 4 5 6 7

C

1

1

3

B

A

0 1 2 3 4 5 6

B

A

C BA BA B A B A

6+A 7+B

A < B

6+A 7+A

 ≤   + + ≤   + + ≤ 

7+ 8+ 7+ 6+B

A

Figure 5 Example topology (left); transmission schedule for 3 replicas with non-uniform latencies
(middle); scenario with Φ = ±1.5 of clock drift (right).

schedule in the middle is two time units long and is repeated over and over; the network
reaches steady state at t = 6. A’s and B’s packets reach the switch at the same time and
one of them (here, B’s packets) must wait in C’s downstream queue, so, for this schedule to
work, the queues at the switch must be able to hold at least two packets. Only packets from
B to C experience queueing delay (one time unit, marked with asterisks in the figure), so the
effective one-way delay is 2 from A to B and from B to A; 4 from A to C; and 5 from B to C.
With this schedule, the algorithm in Figure 4 continues to be safe if we set maxDelay= 5. If
a packet drop had occurred during the simulation, we could have repeated the process with
a different schedule. This step is needed only once: once a suitable schedule has been found
for a given replica network, it can be used without further simulation.

The schedule does not necessarily have to give the same number of slots to each node –
different nodes can be given slots at different rates, as long as all the nodes use the same,
consistent schedule. The schedule can even be changed at runtime, since the nodes can use
the synchronized clocks to switch to a new schedule at a consistent point in time. In our
prototype, we use this feature to adjust to imbalanced and/or changing workloads.

3.4 Imperfect clock synchronization
Next, we change our assumption about clocks and require only that they are synchronized
up to some known upper bound Φ (A7). At first glance, this seems dangerous because we
relied on the clocks for both ordering and coordination. However, recall that for ordering,
it is sufficient if, once we execute a request, no other request with a lower timestamp can
arrive. For this, we can simply wait a little longer.

How much longer? We can find the answer by adjusting our network simulation. We can
1) introduce a variable δi for the offset of node i’s clock, relative to some hypothetical global
clock, we can 2) express the transmission times of the packets as global timestamps plus some
linear combination of these variables, and we can 3) maintain multiple “possible worlds”,
each with particular constraints on the values of the δi, roughly analogous to symbolic
execution [55].

For instance, suppose Φ = ±1.5, and assume that, in the topology from Figure 5, A
and B are supposed to broadcast packets at global times t = 2 and t = 3, respectively.
Clearly, copies of both packets need to pass through C’s downstream queue. In the simpler
simulation from Section 3.3, the switch would simply have sent A’s packet at t = 3 and B’s
packet at t = 4, but with Φ = ±1.5, the packets could arrive at the switch in any order,
and they may or may not be in the queue at the same time. Thus, there are four possible
cases: 1) the switch finishes sending A’s packet before B’s packet arrives; 2) B’s packet
arrives while A’s packet is being sent; 3) A’s packet arrives while B’s packet is being sent;
or 4) the switch finishes sending B’s packet before A’s packet arrives. Figure 5 shows the

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:9

1: sendWait : fifoQueue ▷ Client requests waiting to be broadcast
2: ctrlWait : fifoQueue ▷ Control messages waiting to be broadcast
3: execWait : set ▷ Requests waiting to be executed
4: highWater : map ▷ Each other replica’s high water mark
5: termSeq : map ▷ Terminal sequence number
6: numOmit : map ▷ #consecutive missing packets by sender
7: deadDecl : set
8: alive : set = {1, 2, ..., N} ▷ Who the local replica thinks is alive
9: myHighWater: int = -1

10: execUpTo : int = -1
11:
12: procedure timeout(x) ▷ Invoked once per slot
13: receiveFromClients()
14: receiveFromReplicas(x)
15: doBookkeeping()
16: if sender[x mod L]=myID then send(x)
17: execute()
18: setTimeout(getTime()+S, x+1)
19: procedure send(x) ▷ If it is our turn to send, make a transmission
20: if !ctrlWait.isEmpty() then
21: (origSeq,msg) = ctrlWait.popFirst()
22: else if !sendWait.isEmpty() then
23: (origSeq,msg) = (x,sendWait.popFirst())
24: else
25: (origSeq,msg) = (x,⊥)
26: broadcast(x,origSeq,myHighWater,msg)
27: execWait.add(x,origSeq,msg)
28: procedure execute ▷ Execute requests when it is safe to do so
29: safe = mini∈alive highWater.get(i)
30: while execUpTo<safe andxex(_,execUpTo+1,req) ∈ execWait do
31: execWait.remove(_, ++execUpTo, _)
32: if req = REQ(orig, id, req) then
33: resp = execute(req)
34: sendToClient(orig,(id,resp))
35: procedure receiveFromClients
36: while (orig,id,req) = messageFromClient() do
37: sendWait.append(REQ(orig,id,req))
38: procedure receiveFromReplicas(x)
39: dt = miny (OneWayDelay(myID,sender[(x-y) mod L]) = y)
40: expSlot = (L + x - dt) mod L
41: expSrc = sender[expSlot]
42: if (src,(seq,origSeq,srcHWM,msg)) = msgFromReplica() then
43: numOmit.put(src, 0)
44: if origSeq ̸= seq then execWait.add(seq,origSeq,msg)
45: execWait.add(seq,seq,msg)
46: highWater[src].put(srcHWM)
47: if srcHWM< expSlot and (srcHWM+1, _, req)∈execWait then
48: ctrlWait.add(srcHTM+1,req)
49: if msg = DEAD(who,lastSeq) then
50: deadDecl.add(src, who, lastSeq)
51: else // Message from expSrc is missing
52: missingSoFar = numOmit.get(expSrc) + 1
53: numOmit.put(expSrc, missingSoFar)
54: if missingSoFar = k + 1 then
55: lastReceived = maxs ((expSrc, s, _) ∈ execWait)
56: for i = 1 to k + 1 do
57: ctrlWait.add(DEAD(expSrc,lastReceived)
58: deadDecl.add(myID, expSrc, lastReceived)
59: procedure doBookkeeping
60: // Figure out who has been declared dead by all live replicas
61: D = maxD ∀d ∈ D, o ∈ (alive \D) : (o, d, _) ∈ deadDecl
62: for d ∈ D do
63: alive = alive \{d}
64: highWater.remove(d)
65: for f ∈ N \ D do
66: termSeq.put(d, max{q : (_, d, q) ∈ deadDecl })
67: while true do ▷ Compute longest contiguous prefix of received messages
68: expSrc = sender[myHighWater+1 mod L]
69: if (myHighWater+1, _, _) ̸∈ execWait and (expSrc ∈ alive or
70: termSeq.get(expSrc) > myHighWater+1) then break
71: myHighWater ++
72: procedure init
73: timeout(0)

Figure 6 Server-side algorithm for Watchmaker.

NINeS 2026

26:10 Running Distributed Systems Like Clockwork

values of δA and δB for which each case arises. We can then simply “fork” four copies of the
simulation, one for each case, with the transmission times expressed symbolically in terms
of δA and δB , forking additional copies as necessary; we can reject a candidate schedule if
any scenario results in a queue overflow, and we can set maxDelay to the highest one-way
delay in any scenario. This computation is expensive, but it only needs to be done once for
each topology, and it can be done offline.

3.5 Occasional packet losses and crash faults
Next, we admit the possibility of occasional packet losses (A4), as long as not more than k

consecutive packets from a given sender are lost. (This is the key “leap of faith” that the
quasi-synchronous model requires.) One simple way to leverage A4 would be to just send
copies of every request in k + 1 consecutive slots. However, that would be quite wasteful –
especially given that, to be conservative, one may want to choose k to be somewhat large.
(For instance, k = 4 would result in a 75% loss of potential throughput.) However, we are
able to do better because, since transmissions are coordinated, nodes know when to expect
packets and can thus reliably detect when a loss has occurred. Moreover, we can use A4
to distinguish between corruption losses and crash faults: a sequence of k or fewer missing
packets is due to corruption, and any longer sequence is because the sender has crashed.

Thus, we can adjust the server-side algorithm to the one in Figure 6. (We keep the
client-side algorithm from Figure 3, except that we now use the client’s timestamps only
as unique identifiers; the clients’ clocks need not be synchronized with the replicas’ clocks.)
Whenever a replica i broadcasts a packet, it includes 1) a sequence number, 2) the original
sequence number of the packet, if it is being retransmitted; and 3) the highest sequence
number s such that i has received all transmissions with sequence numbers up to s (with
an important exception we will discuss in a moment). We refer to this as i’s high-water
mark. When another replica notices that i’s high-water mark si is lower than it should be,
it retransmits the packet with sequence number si + 1, assuming it has a local copy. This
retransmission is given a new, higher sequence number s′

i > si, but, to prevent replicas from
“falling behind”, it counts for both slots si and s′.

But what if a replica crashes and stops broadcasting packets? To prevent the other
replicas from becoming “stuck”, we must allow them to skip the crashed replica’s slots. We
can reliably detect crashes using assumption A4, so, if a replica i is missing k+1 transmissions
from another replica j and s′′ was the sequence number of the last packet i has received
from j, it seems tempting to just let i skip all of j’s slots after s′′. However, even though
in this situation i can be sure that j has crashed, it cannot be sure that s′′ was truly the
last transmission; other replicas may have received a few more packets with higher sequence
numbers. To handle this case correctly, we require i to broadcast a DEAD(j,s”) message in
this situation, to pronounce j dead only after it has received similar messages from all the
other live replicas, and to skip j’s slots only after the highest sequence number that any live
replica has received from j. In this (rare) case, we can afford to ensure delivery of this key
message by sending k + 1 copies back-to-back.

If losses are possible, we can no longer rely on timestamps alone when executing requests.
Suppose a replica i executes a request r, responds to the client, and then crashes immediately.
If all the other copies of r happen to have been dropped in the network, the request is lost.
Instead, we execute requests once they are covered by the high-water marks of all the live
replicas; recall that, if losses are extremely rare, this almost always happens after one RTT.
As before, requests are executed in the order of their sequence numbers, and they can be
garbage-collected immediately after execution, since at this point all other replicas have

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:11

received them.

3.6 Link failures and partitions
We now remove the last two of our idealized assumptions and admit link failures (A5) and
partitions (A6). This adds another possible explanation for why a replica i might see k

consecutive losses from another replica j: instead of having crashed, j might still be alive
but is unable to reach i. If a link failure disconnects a link (a, b) but does not disconnect
the entire network, there must be a node c that can reach both a and b. In this situation,
both a and b will be stuck in the WAIT state, since they both consider each other faulty but
their live sets will never match c’s, who can still reach both of them. This is not a safety
issue, and liveness is preserved for the remaining maximum clique; although one could in
principle keep a and b alive by redirecting their traffic through c, we choose not to do this
here, to keep things simple.

If a link failure partitions the network, the challenge, as usual, is to prevent the state
in different partitions from diverging. A simple way to do this is to simply stop executing
requests once the live set no longer contains a majority of the replicas; that way, at most one
partition can be live at any given time. Notice that, if this last change is made, Watchmaker
requires 2f + 1 replicas to tolerate f faults. In contrast, all previous versions require only
f + 1 replicas, which is the lower bound for synchronous systems [33]. We have included a
formal proof of correctness in Appendix A.

3.7 View changes
In a long-running deployment, handling replica crashes (Section 3.5) is not enough – there
must also be a way to perform a view change that replaces dead replicas with new ones. As
usual in SMR protocols, this can be done by having the “old” set of replicas process the
view-change command as a special request, much like a normal client request, except that its
execution changes the set of replicas. In Watchmaker’s case, the special request should also
contain a new transmission schedule (Section 3.3) and a restart time, sufficiently far in the
future, at which this new schedule is to be activated. Until then, the old replicas continue
with the protocol, to handle any individual packet losses (Section 3.5) and any messages
that are still in flight, but they hold any new client requests. Any new replicas would have
to already be connected to the clock network and the replica network, although they could
of course perform other functions until they are needed.

4 Implementation

In this section, we describe the two prototype implementations of Watchmaker that we built
for our experiments.

Custom kernel: For best results, Watchmaker needs tight control over the timing
of network transmissions and computations – more than commodity kernels typically
provide. (Even most real-time kernels focus more on meeting deadlines than on syn-
chrony: they will guarantee that certain things are done before a certain point in time,
but not necessarily at a certain point in time.) Hence, we decided to write a small kernel
of our own. Our kernel consists of 1,434 lines of C++ code and 132 lines of assembler;
it runs on standard x86 hardware and has a driver for the Intel X710 NIC, as well as
for the RS-232 port we use to keep the clocks in sync. We omit 1) graphics and HID

NINeS 2026

26:12 Running Distributed Systems Like Clockwork

drivers because the replicas typically run headless, 2) storage drivers because our state
machines are not persistent, and 3) support for the many advanced feature of the X710
NIC that we do not use. With this custom kernel, we can control most sources of “time
noise” [22] and can thus get tight bounds for timing.
Linux version: To demonstrate that our approach does not fundamentally depend on
a custom kernel, we also implemented a version of Watchmaker on Linux 6.0.12 and
DPDK 20.11.0. This cannot match the performance of our custom kernel because Linux
was not designed for predictable timing and thus produces a lot of time noise. We
took a variety of measures to reduce this “noise” as much as we could; for instance, we
disabled TurboBoost and pinned the threads to specific cores. (See Section 5.1 for a list of
measures.) Additionally, since we were not able to access the CTS pin from user level, we
used periodic beacon packets, sent from an additional machine over another dedicated
switch to a separate NIC port, as the shared clock signal in the Linux experiments.
Despite all this, we would not recommend our prototype for production use without a
much closer look for sources of time noise that we may have missed.
Clock synchronization: Watchmaker needs 1) a rock-solid way to synchronize clocks,
without estimates or heuristics, and 2) control over precisely when a given network packet
will be sent. Ideally, these features would be provided by the hardware, perhaps in the
form of a simple “clock port” (see Section 2.2) and an extra “time” field in the NIC’s
transmit descriptors. Since these features are not yet available on commodity hardware
– certainly not on the hardware we have – we used two simple workarounds.
For the “clock port” we used the CTS pin on one of the replicas’ RS-232 ports. This is
not an ideal choice, since the pin can only be read with an inb instruction, which can
take a few microseconds (!) on our Xeon CPUs. We use one CPU core to read the pin in
a tight loop; whenever this core sees the pin change from 0 to 1, it increments an epoch
counter E and saves the CPU’s time-stamp counter (TSC) in a variable T [E]. Then,
whenever Watchmaker needs to know the current time, we use π · E + (tsc − T [E]) · c,
where π is the pulse width of the external clock signal on the CTS pin in nanoseconds
and c is a correction factor that both converts from clock cycles to nanoseconds and
accounts for the local clock drift. We set c to π·n

T [E]−T [E−n] ; this is possible because we
have a high-quality external clock signal, and it also accounts for the fact that c can vary
a bit over time, e.g., in response to temperature changes. For our experiments, we use
n = 1; our CPUs do support Intel’s invariant TSC, which ensures that the TSC advances
at a constant rate. Notice that our drift bound Φ must include the multi-µs execution
time of the inb instruction, which is unfortunate; however, the queues in our switch can
easily handle overlapping transmissions for that amount of time, so this does not create
a risk of queue drops, it merely increases latency.
Timed send: For timed transmissions, we use a second core that constantly watches
the transmission buffers, reads the transmission-time field as soon as the buffer is ready,
and then keeps reading the TSC until the specified transmission time arrives; then it
issues the transmission command to the NIC. With this method, there is a small delay
τ between this point and the time the NIC actually starts transmitting, but since this
delay is the same for all of our machines, it merely shifts the network schedule backward
by τ .
These workarounds create an overhead of two CPU cores for Watchmaker, but this
overhead could easily be removed by adding these two simple features to the hardware.
In fact, our NICs support IEEE 1588 time synchronization and therefore already do
have clocks with nanosecond-level precision, but they use these clocks to record the

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:13

transmission time after the fact, which is not sufficient for our purposes. We speculate
that this could be changed with a firmware update.
KVS: Our implementation of Watchmaker runs on a single core. It has a hard-coded
transmission schedule: each replica is given a fixed-size transmission window in which to
broadcast on the replica network, and the windows are assigned round-robin. We also
implemented the two standard workloads for evaluating SMR protocols: a NOP state
machine, to evaluate the raw performance of the SMR protocol itself, and a simple key-
value store (KVS), to measure performance with a somewhat more realistic workload.
To enable comparisons with prior work, we did not make the KVS persistent, so the keys
and values are stored in memory on each replica.

5 Evaluation

The main questions we wanted to answer experimentally were: 1) How does Watchmaker
compare to state-of-the-art algorithms in terms of latency and throughput?, 2) How well
does its throughput scale with the number of replicas?, 3) How quickly can it recover from
faults?, 4) How well can it adjust to changing and unbalanced workloads?, 5) How much of its
benefits are due to having a custom kernel?, and 6) How good is its end-to-end performance
with the key-value store as an application?

5.1 Experimental setup
Hardware: We ran our experiments on a cluster of Dell PowerEdge R440 servers. Each
server had two 2.1 GHz Xeon Silver 4216 CPUs, 64 GB of RAM, and two NICs: one with
two 1 Gbps copper ports (a Broadcom BCM5720), and one with four 10 Gbps optical
ports (an Intel X710). We used some servers as replicas and some as clients. Both clients
and replicas were connected to the access network (Section 2) via one of their optical
ports; the replicas were additionally connected to the replica network using a second
optical port. We used two Juniper EX4550-32F switches, one for each network, plus a
third for the Linux experiments (Section 5.7). The copper ports were used only during
startup and to download results, but not during the experiments themselves.
Baselines: We chose NOPaxos [68], Nezha [38], Fast Paxos [62] and Multi-Paxos [60] as
baselines. NOPaxos and Nezha are both state-of-the-art protocols; they use approaches
that are related to ours – NOPaxos leverages the network for ordering, while Nezha
leverages synchronized clocks – and they are the highest-performing protocols we are
aware of. The Paxos variants are classics, and other SMR papers often include them for
reference. There are literally dozens of other SMR protocols we could have chosen, but
in many cases the comparison would not have been very fair and/or very interesting: for
instance, TOQ-EPaxos [99] and Domino [108] do use synchronized clocks, but they are
designed for WANs, so their throughput is naturally lower.
Software: For the Watchmaker experiments, the servers ran our custom kernel (Sec-
tion 4), but the clients simply ran Linux 6.0.12. For the other experiments, the servers
ran Linux as well. We obtained the codebases for NOPaxos, Fast Paxos, and Multi-Paxos
from the NOPaxos github repository, which is mentioned in its source paper. We did
the same for Nezha. Since we did not have a P4 switch, we ran the NOPaxos sequen-
cer in software on a separate machine instead. We used the clients included with each
source repository to generate requests on the clients; we made a small modification to
the NOPaxos client to send requests directly to the software sequencer instead of broad-

NINeS 2026

26:14 Running Distributed Systems Like Clockwork

casting them. Since we did not have access to Huygens, we used Nezha with aggressively
configured NTP; the reported clock sync accuracy was on the order of a few hundred ns.
Workloads: For most of our experiments, we used a simple “Echo-RPC” state machine
that receives 32-byte requests and echoes them back to the client. For the KVS workload,
we use requests with a one-byte opcode (GET or PUT), a 4-byte key, and, for PUTs an
8-byte value. The responses consist of a one-byte status code plus, for GET responses,
an 8-byte value. Additionally, Multi-Paxos takes a packet batching parameter for its
replicas, which we set to 3.
Synchronization: In the Watchmaker experiments, we synchronized the clocks by con-
necting the CTS pin on each server’s RS-232 port to an external signal generator, a
Siglent SDG1032X. (We did not experiment with redundant signal generators.) This
device cost about $350 at the time of writing; it has a special circuit for square waves
that supports up to 60 MHz and has a jitter of less than 300ps plus 0.05ppm of period.
We configured it to generate square waves at 66 kHz, which we used for clock synchroniz-
ation as described in Section 4. Based on the results from Figure 2 in Section 2.2, we set
∆ = 30 µs and Φ = ±3 µs. We configured Watchmaker with a simple round-robin trans-
mission schedule, with a 15 µs transmission window for each replica; this corresponds to
725K MTU-sized packets per second, or about 8.7 Gbps.
Time noise mitigations: Our Linux experiment ran on Fedora 35 servers (Linux
6.0.12-100.fc35.x86_64) with a 2.1 GHz CPU (SMT off). Core 0 was reserved for OS
bookkeeping. All DPDK and SMR threads were isolated to cores 14 via isolcpus=1-4
and pinned using pthread_setaffinity_np. At boot, we applied the following kernel
flags to eliminate jitter sources and background activity:

intel_iommu=on isolcpus=nohz,domain,managed_irq,1-4 nohz_full=1-4
rcu_nocbs=1-4 rcu_nocb_poll kthread_cpus=0 irqaffinity=0 nosmt nowatchdog
tsc=nowatchdog preempt=none processor.max_cstate=0 intel_idle.max_cstate=0
idle=poll mitigations=off iTCO_wdt.disable=1 mce=off split_lock_detect=off

mce=off suppresses Machine Check Exception interrupts that could asynchronously pree-
mpt timingcritical threads. In the BIOS, we disabled Turbo Boost, monitor/MWAIT,
and memory patrol scrubbing. In user space, we used DPDK 20.11.0 with hugepages.
On startup, the main thread:

1. called iopl(3) to gain raw I/O privileges.
2. invoked mlockall(MCL_CURRENT|MCL_FUTURE) and performed stack prefaulting to

avoid page faults.
Meanwhile, the other functional threads each:

1. executed asm volatile("cli") to disable interrupts.
2. invoked mlockall(MCL_CURRENT|MCL_FUTURE) to lock their working set in memory.
Additionally, we removed real-time scheduling quotas via:

echo -1 | sudo tee /proc/sys/kernel/sched_rt_runtime_us

and wrapped the SMR code in a systemd service configured with SCHED_FIFO@98, LimitRTPRIO=99,
LimitMEMLOCK=infinity, and CPUAffinity=1-4. This ensures uninterrupted, high-
priority execution on the isolated cores.

5.2 Latency vs. throughput
A standard experiment in the SMR literature is to measure throughput with a NOP state
machine, so that performance is really only limited by the SMR protocol and not by the
state machine itself. We followed the approach in the Nezha paper and ran experiments both

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:15

 0

 100

 200

 300

 400

 500

30K 300K 3M 30M

Nezha
Watchmaker

Watchmaker+batching

L
a
te
n
c
y

(µ
s
)

Open-loop throughput (Requests/s)

 0

 100

 200

 300

 400

 500

30K 300K 3M 30M

Nezha
Watchmaker

Watchmaker+batching

Fast Paxos
NOPaxos

Multi-Paxos

L
a
te
n
c
y

(µ
s
)

Closed-loop throughput (Requests/s)

Figure 7 Throughput for Watchmaker and our baselines, with open-loop (left) and closed-loop
(right) workloads.

with closed-loop and open-loop workloads. In the closed-loop workload, clients send a new
request whenever they receive a response to the previous one; in the open-loop workload,
clients instead use a Poisson process to generate requests, without waiting for responses.
We varied the request rate by changing the number of clients and/or their parameters; we
measured the median latency and the average throughput. We used N = 3 replicas for all
systems and ran experiments with and without batching.

Figure 7 shows our results. We make two observations. First, Watchmaker’s open-loop
throughput without batching is 700K requests/s, which is about three times as high as
Nezha’s. At this rate, the bottleneck is actually not the SMR protocol but the bandwidth
of our 10 Gbps links.

Second, batching can boost Watchmaker’s throughput to 28M requests/s – two orders
of magnitude above Nezha’s throughput – without a significant latency increase. This is
because Watchmaker’s replica-network transmission schedule is fixed and consists of MTU-
sized packets. If the requests are small (in our case, 32 bytes), these packets will be sent
mostly empty; filling up the unused bits with extra requests does not change much. We
report these results separately so that the reader can decide on her own which comparison
makes more sense. However, we note that, in the configuration we used, Nezha does use
some batching as well [39, §6.2].

Watchmaker can achieve this high throughput because of our stronger, quasi-synchronous
assumptions, which capture more of the power of the underlying hardware. Having closely
synchronized clocks and fine-grained control over the replica network enables Watchmaker
to carefully choreograph packet transmissions and thus to “run like clockwork”; this, in com-
bination with ruling out certain very pessimistic packet-loss patterns, enables it to achieve
hard bounds on propagation delays, which is fundamentally impossible in the asynchronous
model. Thus, Watchmaker has a key advantage over algorithms that merely optimize for
such conditions but are not willing to assume them.

5.3 Tail latencies
By reporting only the median latency, Figure 7 obscures an important detail of the latency
distribution that distinguishes quasi-synchronous protocols from partially synchronous ones.
To show this, we sent open-loop requests to Nezha and Watchmaker, at a constant rate that
was 95% of each protocol’s peak throughput, and we captured the per-request latencies in
steady state, without the first 100 ms and the last 100 ms of the trace, to avoid startup and
shutdown artifacts.

Figure 8 shows our results as a CDF. Since the replicas are not fully saturated at this
rate, Watchmaker’s latencies are quite stable: the median was 262 µs and the 99th percentile

NINeS 2026

26:16 Running Distributed Systems Like Clockwork

0%

20%

40%

60%

80%

100%

1ms 10ms 100ms 1000ms

Watchmaker
NezhaF

ra
c
ti
o
n

o
f
re
q
u
e
s
ts

Latency

Figure 8 CDF of the end-to-end latency for
Nezha and Watchmaker.

0
100k
200k
300k
400k
500k
600k
700k
800k

 1 2 3 4 5

T
h
ro
u
g
h
p
u
t
(R
e
q
s
/s
)

Replicas

 1 2 3 4 5
 0

 100

 200

 300

 400

 500

L
a
te
n
c
y

(µ
s
)

Replicas

Figure 9 Scalability of Watchmaker: average
throughput (left) and median latency (right).

was only 443 µs. In contrast, Nezha’s 99th-percentile latency was over 59 ms. This is be-
cause Watchmaker closely coordinates the replicas and executes “like clockwork”, with very
little protocol-induced variation. In contrast, Nezha, like any other asynchronous protocol,
experiences variable latencies and thus generates a heavy latency tail.

5.4 Scalability
Next, we ask how Watchmaker’s throughput and fault-tolerance properties change with the
number of replicas. To find the answer to the first question, we ran experiments with two
open-loop clients that together generated 680K requests/s (roughly 95% of the maximum
without batching). We varied the number of replicas from N = 1 (no replication) to N = 5,
and we measured both latency and throughput.

Figure 9 shows our results: average throughput (left) and median latency (right). The
throughput remains constant as we increase the number of replicas. This is expected for
Watchmaker because there is almost no coordination between the replicas, other than the
constant-size field for the high-water mark. However, it is interestingly different from many
existing protocols, where throughput often degrades with the number of replicas (e.g., in
Paxos and Fast Paxos).

Latencies are lowest for the unreplicated case (N = 1) and increase linearly when Watch-
maker is enabled. This is because a Watchmaker replica executes a request only once it
has positive confirmation that each of the other live replicas has received the request, and
this takes O(N) transmission slots. We speculate that this effect could be avoided by using
NAKs in the rare case that a packet is lost, instead of ACKs in the common case that it is
received.

5.5 Recovery from faults
Next, we examine how Watchmaker recovers from faults. Given our quasi-synchronous
assumptions, there are two different scenarios that seem interesting: what happens when a
replica crashes, and what happens when a packet is lost. We examine each in turn.

Figure 10 (left) shows throughput over time; at t = 0, we intentionally crashed one of
the replicas. As expected, this causes Watchmaker to briefly get “stuck”, since it initially
assumes that some of the now-missing packets were lost and need to be retransmitted.
(Throughput does not immediately fall to zero because the remaining replicas still have
some responses queued up.) However, after k + 1 transmission “rounds”, the crashed replica
is declared dead and its transmission slots are adopted by the other replicas; as a result,
throughput quickly returns to normal. The downtime is about 540 µs. For comparison,
NOPaxos [68] reported a downtime of about 300 ms and Nezha [39] reported a downtime of

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:17

0

200k

400K

600K

800K

1M

-250 0 250 500

Time (µs)

 0 250 500 750
0

200k

400K

600K

800K

1M

T
h
ro
u
g
h
p
u
t
(R
e
q
s
/s
)

Time (µs)

Figure 10 Recovery from faults: response to
a node crash (left) and to a physical-layer packet
loss (right).

0

100K

200K

300K

 0 0.2 0.4 0.6 0.8 1

Replica 1
Replica 2
Replica 3T

h
ro
u
g
h
p
u
t
(R
e
q
s
/s
)

Time (s)

Figure 11 Response to an imbalanced work-
load: request rate received by each of the three
replicas (lines) and response rate (points).

about 4 s. Recall from Section 3 that quick and reliable fault detection is one of the benefits
of the quasi-synchronous model.

Figure 10 (right) shows our results from a similar experiment, except that at t = 0, we
intentionally dropped a single packet. Just like the crash, this causes Watchmaker to get
“stuck”, but only until another replica retransmits the missing packet. This happens quickly,
after a brief glitch of around 270 µs; after that, throughput returns to normal. Recall from
Section 2.1 that, at least in the environment for which we have designed Watchmaker, the
probability of a physical-layer loss is very low, perhaps on the order of 10−8. If a Watchmaker
instance processes 7 ·105 requests per second, we would expect such a glitch to occur roughly
once every 71 seconds.

5.6 Dynamic workload
In the experiments we have shown so far, the replicas were receiving requests at the same rate.
To test the dynamic scheduling mechanism from Section 3.3, we performed an experiment in
which the replicas were receiving requests at different rates, which randomly changed every
200 ms but always added up to the full capacity of the system. The schedules were adjusted
every 1 ms. Once every 10 ms, we measured the total rate at which the clients sent requests
to each replica, as well as the rate at which the clients received the responses.

Figure 11 shows results from an example run. As expected, the response rates closely
track the request rates. Sometimes there is a small delay when a change happens right in
the middle of a 10ms window, but overall, the system continued to fully utilize the available
bandwidth while quickly adjusting to the imbalance in the workload.

5.7 Custom kernel vs. Linux
A natural question is how much of Watchmaker’s high performance is due to the careful
coordination that the quasi-synchronous model enables, and how much is due to our custom
kernel. To answer this question, we re-ran the open-loop experiment from Section 5.2 with
our Linux implementation of Watchmaker. Under these conditions – on unmodified Linux
and stock DPDK, in combination with our time-noise mitigations mentioned in Section 5.1
– Watchmaker sustained an average throughput of 545K requests/s with a median latency
of 4.5 ms.

The key difference in this setting is that the synchronization is less precise than with
the custom kernel and the signal generator. Because of this, we cannot transmit quite as
aggressively. Recall from Section 3.4 that queue overflows occur when transmissions from
different replicas overlap for too long; we avoid this by using larger transmission slots with

NINeS 2026

26:18 Running Distributed Systems Like Clockwork

some extra spacing in between. The spacing leads to a somewhat lower throughput and
the larger slots to a higher latency. However, in absolute terms, the throughput was still
more than twice as high as Nezha’s, and the 99th percentile latency was almost an order of
magnitude lower.

These results suggest that 1) the benefits are due to Watchmaker and not to our kernel,
and that 2) with some additional due diligence to rule out other sources of time noise, a
deployment on Linux could be an option. We speculate that performance on Linux could
be improved, e.g., by adding a custom driver to access the shared clock signal.

5.8 Application: KVS
Finally, we ask how well Watchmaker performs with a more realistic application as a state
machine, instead of the NOP state machine we have used for the experiments so far. This
question is more subtle than it may seem at first: the slower the application, the less
important the performance of the SMR algorithm will be. For instance, if the SMR protocol
can handle 200k requests/s, its overhead will be negligible for an application that can handle
only 20k requests/s, but it will massively limit an application that can handle 1M requests/s.
Because of this, we decided against using Redis, as in some of the earlier work [38,68]: with
Redis, even slower SMR protocols can perform close to the unreplicated case. Instead,
we wrote our own simple in-memory KVS, as described in Section 4. We ran open-loop
workloads with Watchmaker and N = 3 replicas, for reads and writes in different proportions.
We used 4-byte keys and 8-byte values, so the packet size is five bytes for read requests and
write responses, which are both small, and 13 bytes for write requests and read responses,
which both contain a value.

We found that the throughput for our KVS is essentially the same as with the NOP
workload, so we did not include a separate graph. This is expected: Watchmaker is so
fast that the bottleneck shifts from the SMR protocol to the link capacity, even for high-
throughput applications like our KVS.

6 Related Work

To the best of our knowledge, Watchmaker is the first practical SMR protocol that relies
on fine-grained synchrony for correctness: earlier solutions either 1) rely on a weaker form
of synchrony, 2) use synchrony only as an optimization while remaining asynchronous, or 3)
are theoretical and do not have a practical implementation.

Synchrony in theory: The theoretical underpinnings of the synchronous model are
well-established, including lower bounds, such as the N > 2f bound for the asynchronous
and partially synchronous models [33], the limitations of synchronized clocks by them-
selves [91], the famous FLP impossibility [37], and the failure detector abstraction [20]
as a way to capture synchrony assumptions.
State-machine replication: Since the original Paxos paper [59], a rich and growing
literature on consensus protocols and SMR has emerged [3, 8, 13, 14, 16, 21, 30, 31, 34, 35,
56,60–62,75,77,79–83,86,90,96,98,100,106,108,112]. Most of these protocols are for the
partially synchronous or the asynchronous model and must thus pay a price (in terms
of overhead and the number of replicas) for the ability to tolerate high delays and losses,
even when these do not actually occur. Protocols that use synchronized clocks or special
network features are discussed separately below.

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:19

Synchrony in practice: Some SMR implementations have used the synchronous model,
e.g„ most recently IGOR [74]. But IGOR simply assumes that the network is reliable
and that packets are never lost. This may be fine for embedded applications such as
IGOR’s, which presumably send very few messages to begin with, but not for data-
center environments, where sporadic losses will happen once in a while. There has been
some debate about the role synchrony should play in this setting. On the one hand,
Aguilera and Walfish [7] warns against synchronous model and considers it “dangerous”;
they instead suggest the asynchronous model with a perfect failure detector, as later
realized in [64]. On the other hand, some of us have pointed out in a prior workshop
paper [109] that data-center hardware is more reliable than it is typically given credit
for. A possible compromise is Verissimo et al. [104]’s “timely computing base”, which
confines synchrony to some key parts of the system; this partly inspired our distinction
between replica and access networks.
Synchronized clocks: There are many ways to synchronize clocks using network mes-
sages, and recent solutions, such as Sundial [70] and DPTP [50], can get uncertainty
bounds on the order of 100 ns, and Firefly [78] achieves sub-10 ns device-to-device sync
accuracy while being scalable and failure-resilient. (Synchronous Ethernet [48] is aim-
ing for nanosecond-level accuracy [72, 93], but it is not yet widely available.) However,
most solutions rely on heuristics and estimates, so this is not a hard guarantee. Perhaps
because of this, many systems have followed Liskov’s advice [73] and used synchron-
ized clocks only for performance but not for correctness. Systems like Spanner [27],
CLOCC [5], and TAPIR [111] have used loosely synchronized clocks to establish a total
order; CRaft [105] and CockRoachDB [97] have use them to speed up Raft, Domino [108]
to accelerate Fast Paxos, and TOQ [99] to improve EPaxos. Nezha [38] also uses them
for its deadline-ordered multicast primitive. The key difference to quasi-synchrony and
Watchmaker is that none of these protocols takes the final step and relies on the syn-
chrony for correctness. Thus, despite their excellent fast-path performance, they all
technically remain asynchronous and thus are subject to the known limitations of that
model.
Special hardware features: A number of recent systems have focused specifically
on data centers. One line of work relies on special hardware: NOPaxos [68], Eris [67],
1pipe [66], and Hydra [23] use programmable switches for ordering, and Waverunner [10]
uses FPGA-based SmartNICs to accelerate data replication. This is somewhat ortho-
gonal to our approach: the hardware definitely helps with speed, but it does not funda-
mentally change the equation because it cannot do anything that a normal node could
not also do. A second line of work uses topology information: for instance, Speculative
Paxos [88] leverages it to ensure that most packets arrive in order; Watchmaker uses the
same information (A9), but it relies on it for correctness.
Bounded network delays: Watchmaker critically relies on the fact that, in a data-
center network, queueing delays are not inevitable but can be controlled with coordina-
tion. One line of work has used this fact to rein in tail latencies: for instance, SILO [49],
Orchestra [24], Pulsar [12], Clockwork [45], Baraat [32], and Chronos [51] fall into this cat-
egory, and they all achieve latencies that are remarkably stable. However, these systems
are fundamentally best-effort and cannot guarantee a hard bound on message delivery
times. Another line of work does provide such a guarantee: for instance, time-triggered
Ethernet [57] does so with special hardware, while QJump [42] uses QoS features in com-
modity hardware, albeit only for a small fraction of the traffic. A third line of work can
eliminate queueing in the network almost entirely, e.g., with a central arbitrator, as in

NINeS 2026

26:20 Running Distributed Systems Like Clockwork

Fastpass [87], or with RSVP-like reservations, as in Harmony [6]. Vattikonda et al. [102]
proposes a form of TDMA for data-center networks, which resembles the transmission
schedules in Watchmaker. But on their own, these solutions are only one of the pieces
that are necessary for synchrony.
Byzantine consensus: There is a rich literature on tolerating Byzantine [63] faults.
Early solutions, such as Rampart [89] and SecureRing [54], did rely on synchrony for
correctness, but PBFT [17], and much of the work that followed it [1,9,11,18,25,26,28,43,
47,58,65,69,76,94,101,107,110], relied on it only for liveness. Recently, fully-synchronous
solutions have seen renewed interest in the context of cryptocurrencies [2,52,53], but these
protocols typically operate in WANs, where synchrony is threatened, e.g., by network
outages and denial-of-service attacks. As a result, their synchrony assumptions are at
very different timescales: for instance, Algorand [41] assumes a bound on the length of
asynchronous periods that is on the order of days or weeks. Unlike this like of work,
Watchmaker focuses on tolerating crash faults and on data centers, where fine-grained
synchrony is easier to achieve.
Weak synchrony: Several weaker versions of the fully-synchronous model have been
proposed, including partial synchrony [33]. Another example is the mobile sluggish
model [46], which allows the delay bound to be violated by a certain number of sluggish
replicas; PiLi [19] and Sync HotStuff [4] rely on this model. The sleepy model [84] instead
allows replicas to be temporarily offline; Thunderella [85] is an example of a solution for
this model. Other models have assumed probabilities on failures [15, 44, 71, 103] or have
treated timing failures as exceptions that must be handled [36], or have assumed WCETs
and bounded clock drift while allowing for packet loss [29]. Among these, our proposal –
quasi-synchrony – is the most restrictive, in that it only makes sense for tightly-controlled
environments, such as single-tenant data centers. But in return, it comes closest to the
fully synchronous model and thus to the benefits this model provides.

7 Conclusion

At first glance, this paper presents a particular SMR protocol (Watchmaker), with a par-
ticular set of unusual assumptions that the reader may or may not be comfortable with.
But to us, Watchmaker is also meant to illustrate three larger points: 1) the asynchronous
model is not the only model that can be used to build practical distributed systems; 2)
the asynchronous model has both a price, in terms of overhead and complexity, and spe-
cific benefits; and 3) there exist at least some deployment scenarios where it is not obvious
that the benefits justify the costs. As designers of distributed systems, we really do have
a choice when it comes to the fundamental assumptions, and, even though most textbooks
focus almost exclusively on the asynchronous model, that should not be the only option we
consider.

For Watchmaker, we chose a particular assumption – that at most k consecutive packets
can be dropped on an otherwise working link. To us, this seemed like a reasonable starting
point, but it is certainly not the only option. We speculate that there is an entire space
of possible models, each with interesting consequences for the classical distributed-systems
challenges (certainly not just for SMR!). We think that exploring this space further could
be an interesting opportunity for the community.

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:21

References
1 Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J.

Wylie. Fault-scalable Byzantine fault-tolerant services. In Proc. SOSP, 2005. doi:10.1145/
1095810.1095817.

2 Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Efficient
synchronous Byzantine consensus. Cryptology ePrint Archive, Paper 2017/307, 2017. URL:
https://eprint.iacr.org/2017/307.

3 Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchron-
ous Byzantine agreement with expected O(1) rounds, expected O(n2) communication, and
optimal resilience. In Proc. International Conference on Financial Cryptography and Data
Security, pages 320–334. Springer, 2019. doi:10.1007/978-3-030-32101-7_20.

4 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync HotStuff:
Simple and practical synchronous state machine replication. Cryptology ePrint Archive, Paper
2019/270, 2019. URL: https://eprint.iacr.org/2019/270.

5 Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Efficient optimistic
concurrency control using loosely synchronized clocks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1995. doi:10.1145/568271.223787.

6 Saksham Agarwal, Qizhe Cai, Rachit Agarwal, David Shmoys, and Amin Vahdat. Harmony:
A congestion-free datacenter architecture. In Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2024. URL: https://www.usenix.
org/conference/nsdi24/presentation/agarwal-saksham.

7 Marcos Aguilera and Michael Walfish. No time for asynchrony. In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems (HotOS), 2009. URL: https://www.usenix.
org/legacy/events/hotos09/tech/full_papers/aguilera/aguilera.pdf.

8 Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe, Athana-
sios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond applications. In
Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implement-
ation (OSDI), 2020. URL: https://www.usenix.org/conference/osdi20/presentation/
aguilera.

9 Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and
Carl Porth. BAR fault tolerance for cooperative services. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, 2005. doi:10.1145/1095810.
1095816.

10 Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho, Michael Ferdman, Peter Milder, and
Shuai Mu. Waverunner: An elegant approach to hardware acceleration of state machine
replication. In Proceedings of the 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2023. URL: https://www.usenix.org/conference/nsdi23/
presentation/alimadadi.

11 Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. Prime: Byzantine replication
under attack. IEEE Transactions on Dependable and Secure Computing, 8(4):564–577, 2011.
doi:10.1109/TDSC.2010.70.

12 Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno Thereska. End-
to-end performance isolation through virtual datacenters. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014. URL: https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/angel.

13 Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy Ravindran.
Speeding up consensus by chasing fast decisions. In Proceedings of the 47th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN), 2017. URL:
https://ieeexplore.ieee.org/abstract/document/8023110/.

14 Tigran Bantikyan, Jonathan Zarnstorff, Te-Yen Chou, Lewis Tseng, and Roberto Palmieri.
Pineapple: Unifying Multi-Paxos and atomic shared registers. In Proceedings of the 22nd

NINeS 2026

https://doi.org/10.1145/1095810.1095817
https://doi.org/10.1145/1095810.1095817
https://eprint.iacr.org/2017/307
https://doi.org/10.1007/978-3-030-32101-7_20
https://eprint.iacr.org/2019/270
https://doi.org/10.1145/568271.223787
https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
https://www.usenix.org/legacy/events/hotos09/tech/full_papers/aguilera/aguilera.pdf
https://www.usenix.org/legacy/events/hotos09/tech/full_papers/aguilera/aguilera.pdf
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://doi.org/10.1145/1095810.1095816
https://doi.org/10.1145/1095810.1095816
https://www.usenix.org/conference/nsdi23/presentation/alimadadi
https://www.usenix.org/conference/nsdi23/presentation/alimadadi
https://doi.org/10.1109/TDSC.2010.70
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/angel
https://ieeexplore.ieee.org/abstract/document/8023110/

26:22 Running Distributed Systems Like Clockwork

USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2025. URL:
https://www.usenix.org/conference/nsdi25/presentation/bantikyan.

15 Ian Broster, Alan Burns, and Guillermo Rodriguez-Navas. Timing analysis of real-time
communication under electromagnetic interference. Real-Time Systems, 30(1):55–81, 2005.
doi:10.1007/s11241-005-0504-z.

16 Matthew Burke, Audrey Cheng, and Wyatt Lloyd. Gryff: Unifying consensus and shared
registers. In Proceedings of the 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2020. URL: https://www.usenix.org/conference/nsdi20/
presentation/burke.

17 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398461, November 2002. doi:10.
1145/571637.571640.

18 Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In Pro-
ceedings of the 2nd ACM Conference on Advances in Financial Technologies, 2020. doi:
10.1145/3419614.3423256.

19 T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. PiLi: An extremely simple synchronous
blockchain. Cryptology ePrint Archive, page 980, 2018. URL: https://eprint.iacr.org/
2018/980.

20 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225–267, March 1996. doi:10.1145/226643.
226647.

21 Aleksey Charapko, Ailidani Alijiang, and Murat Demirbas. Linearizable quorum reads in
Paxos. In Proceedings of the 11th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2019. URL: https://www.usenix.org/conference/hotstorage19/
presentation/charapko.

22 Ang Chen, W. Brad Moore, Hanjun Xiao, Andreas Haeberlen, Linh Thi Xuan Phan, Micah
Sherr, and Wenchao Zhou. Detecting covert timing channels with time-deterministic replay.
In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14),
October 2014. URL: https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/chen_ang.

23 Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li. Hydra: Serialization-free
network ordering for strongly consistent distributed applications. In Proceedings of the 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2023. URL:
https://www.usenix.org/conference/nsdi23/presentation/choi.

24 Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica. Managing
data transfers in computer clusters with Orchestra. In Proceedings of the ACM SIGCOMM
2011 Conference, 2011. doi:10.1145/2043164.2018448.

25 Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested append-
only memory: making adversaries stick to their word. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, 2007. doi:10.1145/
1294261.1294280.

26 Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, Mirco Marchetti, et al. Making
Byzantine fault tolerant systems tolerate Byzantine faults. In Proceedings of the 6th USENIX
symposium on Networked systems design and implementation (NSDI). The USENIX Asso-
ciation, 2009. URL: https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/
clement/clement.pdf.

27 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Googles globally

https://www.usenix.org/conference/nsdi25/presentation/bantikyan
https://doi.org/10.1007/s11241-005-0504-z
https://www.usenix.org/conference/nsdi20/presentation/burke
https://www.usenix.org/conference/nsdi20/presentation/burke
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3419614.3423256
https://doi.org/10.1145/3419614.3423256
https://eprint.iacr.org/2018/980
https://eprint.iacr.org/2018/980
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://www.usenix.org/conference/hotstorage19/presentation/charapko
https://www.usenix.org/conference/hotstorage19/presentation/charapko
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_ang
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_ang
https://www.usenix.org/conference/nsdi23/presentation/choi
https://doi.org/10.1145/2043164.2018448
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:23

distributed database. ACM Transactions on Computer Systems (TOCS), 31(3), August 2013.
doi:10.1145/2491245.

28 James A. Cowling, Daniel S. Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
HQ replication: A hybrid quorum protocol for Byzantine fault tolerance. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2006.
URL: http://www.usenix.org/events/osdi06/tech/cowling.html.

29 Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model.
IEEE Transactions on Parallel and Distributed systems, 10(6):642–657, 2002. URL: https:
//ieeexplore.ieee.org/abstract/document/774912/.

30 Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos made switch-y.
ACM SIGCOMM Computer Communication Review, 46(2):1824, May 2016. doi:10.1145/
2935634.2935638.

31 Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert Soulé. Net-
Paxos: Consensus at network speed. In Proceedings of the 1st ACM Symposium on SDN
Research (SOSR), 2015. doi:10.1145/2774993.2774999.

32 Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron. Decentralized
task-aware scheduling for data center networks. In Proceedings of the ACM SIGCOMM 2014
Conference, 2014. doi:10.1145/2740070.2626322.

33 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2), April 1988. doi:10.1145/42282.42283.

34 Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. Efficient replication via
timestamp stability. In Proceedings of the 16th European Conference on Computer Systems
(EuroSys), 2021. doi:10.1145/3447786.3456236.

35 Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin,
and Pierre Sutra. State-machine replication for planet-scale systems. In Proceedings of the
15th European Conference on Computer Systems (EuroSys), 2020. doi:10.1145/3342195.
3387543.

36 Christof Fetzer and Flaviu Cristian. Fail-awareness: an approach to construct fail-safe applic-
ations. In Proceedings of IEEE 27th International Symposium on Fault Tolerant Computing,
pages 282–291, 1997. doi:10.1109/FTCS.1997.614101.

37 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, April 1985.
doi:10.1145/3149.214121.

38 Jinkun Geng, Anirudh Sivaraman, Balaji Prabhakar, and Mendel Rosenblum. Nezha: De-
ployable and high-performance consensus using synchronized clocks. Proceedings of the VLDB
Endowment, 16(4):629642, December 2022. doi:10.14778/3574245.3574250.

39 Jinkun Geng, Anirudh Sivaraman, Balaji Prabhakar, and Mendel Rosenblum. Nezha:
Deployable and high-performance consensus using synchronized clocks. arXiv preprint
arXiv:2206.03285, 2022. URL: https://arxiv.org/abs/2206.03285.

40 Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosunblum, and
Amin Vahdat. Exploiting a natural network effect for scalable, fine-grained clock synchron-
ization. In Proceedings of the 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018. URL: https://www.usenix.org/system/files/conference/
nsdi18/nsdi18-geng.pdf.

41 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algor-
and: Scaling Byzantine agreements for cryptocurrencies. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP), 2017. doi:10.1145/3132747.3132757.

42 Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson, Andrew W.
Moore, Steven Hand, and Jon Crowcroft. Queues Don’t matter when you can JUMP
them! In Proceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2015. URL: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/grosvenor.

NINeS 2026

https://doi.org/10.1145/2491245
http://www.usenix.org/events/osdi06/tech/cowling.html
https://ieeexplore.ieee.org/abstract/document/774912/
https://ieeexplore.ieee.org/abstract/document/774912/
https://doi.org/10.1145/2935634.2935638
https://doi.org/10.1145/2935634.2935638
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.1145/2740070.2626322
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3447786.3456236
https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1109/FTCS.1997.614101
https://doi.org/10.1145/3149.214121
https://doi.org/10.14778/3574245.3574250
https://arxiv.org/abs/2206.03285
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-geng.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-geng.pdf
https://doi.org/10.1145/3132747.3132757
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor

26:24 Running Distributed Systems Like Clockwork

43 Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 BFT
protocols. In Proceedings of the 5th European Conference on Computer Systems (EuroSys),
2010. doi:10.1145/1755913.1755950.

44 Arpan Gujarati and Björn B Brandenburg. When is CAN the weakest link? A bound on
failures-in-time in CAN-based real-time systems. In 2015 IEEE Real-Time Systems Sym-
posium. IEEE, 2015. URL: https://ieeexplore.ieee.org/abstract/document/7383582/.

45 Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir Vigfus-
son, and Jonathan Mace. Serving DNNs like clockwork: Performance predictability from the
bottom up. In Proceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020. URL: https://www.usenix.org/conference/osdi20/
presentation/gujarati.

46 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Advances in Cryptology CRYPTO 2019, 2019. doi:10.1007/978-3-030-26948-7_18.

47 Chi Ho, Robbert Van Renesse, Mark Bickford, and Danny Dolev. Nysiad: Practical protocol
transformation to tolerate Byzantine failures. In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2008. URL: https://www.usenix.
org/legacy/events/nsdi08/tech/full_papers/ho/ho.pdf.

48 International Telecommunication Union. ITU-T G.8262/Y.1362 standard, 2018. URL: https:
//www.itu.int/rec/T-REC-G.8262.

49 Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. Silo: Predictable message
latency in the cloud. In Proceedings of the ACM SIGCOMM 2015 Conference, 2015. doi:
10.1145/2785956.2787479.

50 Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. Precise time-synchronization
in the data-plane using programmable switching ASICs. In Proceedings of the 5th ACM
Symposium on SDN Research (SOSR), 2019. doi:10.1145/3314148.3314353.

51 Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat.
Chronos: Predictable low latency for data center applications. In Proceedings of the 3rd ACM
Symposium on Cloud Computing (SoCC), 2012. doi:10.1145/2391229.2391238.

52 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine
agreement. Journal of Computer and System Sciences, 75(2):91–112, 2009. doi:10.1016/j.
jcss.2008.08.001.

53 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Paper
2016/889, 2016. URL: https://eprint.iacr.org/2016/889.

54 Kim Potter Kihlstrom, Louise E Moser, and P Michael Melliar-Smith. The secureRing
protocols for securing group communication. In Proceedings of the Thirty-First Hawaii In-
ternational Conference on System Sciences, volume 3, pages 317–326. IEEE, 1998. URL:
https://ieeexplore.ieee.org/document/656294/.

55 James C. King. A new approach to program testing. In Proceedings of the International
Conference on Reliable Software, 1975. doi:10.1145/390016.808444.

56 Marios Kogias and Edouard Bugnion. HovercRaft: Achieving scalability and fault-tolerance
for microsecond-scale datacenter services. In Proceedings of the 15th European Conference on
Computer Systems (EuroSys), 2020. doi:10.1145/3342195.3387545.

57 Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. The time-
triggered ethernet (TTE) design. In Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), 2005. URL: https://ieeexplore.ieee.
org/abstract/document/1420949/.

58 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative Byzantine fault tolerance. In Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), 2007. doi:10.1145/1294261.1294267.

59 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS),
16(2):133169, 1998. doi:10.1145/3335772.3335939.

https://doi.org/10.1145/1755913.1755950
https://ieeexplore.ieee.org/abstract/document/7383582/
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://doi.org/10.1007/978-3-030-26948-7_18
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/ho/ho.pdf
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/ho/ho.pdf
https://www.itu.int/rec/T-REC-G.8262
https://www.itu.int/rec/T-REC-G.8262
https://doi.org/10.1145/2785956.2787479
https://doi.org/10.1145/2785956.2787479
https://doi.org/10.1145/3314148.3314353
https://doi.org/10.1145/2391229.2391238
https://doi.org/10.1016/j.jcss.2008.08.001
https://doi.org/10.1016/j.jcss.2008.08.001
https://eprint.iacr.org/2016/889
https://ieeexplore.ieee.org/document/656294/
https://doi.org/10.1145/390016.808444
https://doi.org/10.1145/3342195.3387545
https://ieeexplore.ieee.org/abstract/document/1420949/
https://ieeexplore.ieee.org/abstract/document/1420949/
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1145/3335772.3335939

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:25

60 Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001. URL: https://www.
microsoft.com/en-us/research/publication/paxos-made-simple/.

61 Leslie Lamport. Generalized consensus and Paxos. Technical Report MSR-TR-2005-33, MI-
crosoft Research, 2004. URL: https://www.microsoft.com/en-us/research/publication/
generalized-consensus-and-paxos/.

62 Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006. doi:10.1007/
s00446-006-0005-x.

63 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382401, July 1982. doi:
10.1145/3335772.3335936.

64 Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K. Aguilera, and Michael Walfish. Detect-
ing failures in distributed systems with the Falcon Spy Network. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, 2011. doi:10.1145/2043556.2043583.

65 Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. TrInc: Small trusted
hardware for large distributed systems. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2009. URL: https://www.usenix.
org/legacy/events/nsdi09/tech/full_papers/levin/levin.pdf.

66 Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang. 1Pipe: scalable total order communication
in data center networks. In Proceedings of the ACM SIGCOMM 2021 Conference, 2021.
doi:10.1145/3452296.3472909.

67 Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-free consistent transac-
tions using in-network concurrency control. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP), 2017. doi:10.1145/3132747.3132751.

68 Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports. Just say
NO to paxos overhead: Replacing consensus with network ordering. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li.

69 Jinyuan Li and David Mazières. Beyond one-third faulty replicas in Byzantine fault toler-
ant systems. In Proceedings of the 4th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2007. URL: https://www.usenix.org/legacy/events/nsdi07/
tech/full_papers/li/li.pdf.

70 Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter Hochschild, Dave Platt,
Simon Sabato, Minlan Yu, Nandita Dukkipati, Prashant Chandra, and Amin Vahdat. Sundial:
Fault-tolerant clock synchronization for datacenters. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2020. URL: https:
//www.usenix.org/conference/osdi20/presentation/li-yuliang.

71 George MA Lima and Alan Burns. A consensus protocol for CAN-based systems. In Proc.
24th IEEE Real-Time Systems Symposium (RTSS), 2003. URL: https://ieeexplore.ieee.
org/abstract/document/1253289/.

72 Maciej Marek Lipiski. Methods to Increase Reliability and Ensure Determinism in a White
Rabbit Network. PhD thesis, Warsaw University of Technology, 2016. URL: https://
repository.cern/records/tkh30-4ja15.

73 Barbara Liskov. Practical uses of synchronized clocks in distributed systems. In Proceedings
of the 10th ACM Symposium on Principles of Distributed Computing (PODC), 1991. doi:
10.1145/112600.112601.

74 Andrew Loveless, Ronald Dreslinski, Baris Kasikci, and Linh Thi Xuan Phan. IGOR: Ac-
celerating Byzantine fault tolerance for real-time systems with eager execution. In Proc.
27th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021. doi:
10.1109/RTAS52030.2021.00036.

75 Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: building efficient replic-
ated state machines for WANs. In Proceedings of the 8th USENIX Symposium on Operating

NINeS 2026

https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1145/3335772.3335936
https://doi.org/10.1145/3335772.3335936
https://doi.org/10.1145/2043556.2043583
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/levin/levin.pdf
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/levin/levin.pdf
https://doi.org/10.1145/3452296.3472909
https://doi.org/10.1145/3132747.3132751
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/legacy/events/nsdi07/tech/full_papers/li/li.pdf
https://www.usenix.org/legacy/events/nsdi07/tech/full_papers/li/li.pdf
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://ieeexplore.ieee.org/abstract/document/1253289/
https://ieeexplore.ieee.org/abstract/document/1253289/
https://repository.cern/records/tkh30-4ja15
https://repository.cern/records/tkh30-4ja15
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/112600.112601
https://doi.org/10.1109/RTAS52030.2021.00036
https://doi.org/10.1109/RTAS52030.2021.00036

26:26 Running Distributed Systems Like Clockwork

Systems Design and Implementation (OSDI), 2008. URL: https://www.usenix.org/event/
osdi08/tech/full_papers/mao/mao_html.

76 Zarko Milosevic, Martin Biely, and André Schiper. Bounded delay in Byzantine-tolerant state
machine replication. In Proc. 32nd International Symposium on Reliable Distributed Systems
(SRDS), 2013. doi:10.1109/SRDS.2013.15.

77 Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus in
egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP), 2013. doi:10.1145/2517349.2517350.

78 Pooria Namyar, Yuliang Li, Weitao Wang, Nandita Dukkipati, Kk Yap, Junzhi Gong, Chen
Chen, Peixuan Gao, Devdeep Ray, Gautam Kumar, Yidan Ma, Ramesh Govindan, and Amin
Vahdat. Firefly: Scalable, ultra-accurate clock synchronization for datacenters. In Proceedings
of the ACM SIGCOMM Conference, 2025. doi:10.1145/3718958.3750502.

79 Harald Ng, Seif Haridi, and Paris Carbone. Omni-Paxos: Breaking the barriers of partial
connectivity. In Proceedings of the 18th European Conference on Computer Systems (EuroSys),
2023. doi:10.1145/3552326.3587441.

80 Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. Tolerating slowdowns in replicated state ma-
chines using copilots. In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020. URL: https://www.usenix.org/conference/
osdi20/presentation/ngo.

81 Rui Oliveira, Rachid Guerraoui, and André Schiper. Consensus in the crash-recover model.
Technical Report 97/239, EPFL, Département dInformatique, August 1997.

82 Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
Proceedings of the 2014 USENIX Annual Technical Conference (ATC), 2014. URL: https:
//www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro.

83 Seo Jin Park and John Ousterhout. Exploiting commutativity for practical fast replication. In
Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implement-
ation (NSDI), 2019. URL: https://www.usenix.org/conference/nsdi19/presentation/
park.

84 Rafael Pass and Elaine Shi. The sleepy model of consensus. In Proc. Advances in Cryptology
(ASIACRYPT), 2017. doi:10.1007/978-3-319-70697-9_14.

85 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In
Advances in Cryptology – EUROCRYPT 2018, 2018. doi:10.1007/978-3-319-78375-8_1.

86 Sebastiano Peluso, Alexandru Turcu, Roberto Palmieri, Giuliano Losa, and Binoy Ravindran.
Making fast consensus generally faster. In Proceedings of the 46th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN), 2016. URL: https:
//ieeexplore.ieee.org/abstract/document/7579738.

87 Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans Fugal. Fast-
pass: A centralized "zero-queue" datacenter network. In Proceedings of the ACM SIGCOMM
Conference, 2014. doi:10.1145/2619239.2626309.

88 Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishnamurthy.
Designing distributed systems using approximate synchrony in data center networks. In Pro-
ceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2015. URL: https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/ports.

89 Michael K. Reiter. The Rampart toolkit for building high-integrity services. In Theory and
Practice in Distributed Systems, 1995. doi:10.1007/3-540-60042-6_7.

90 Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. SwiftPaxos: Fast geo-replicated state
machines. In Proceedings of the 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2024. URL: https://www.usenix.org/conference/nsdi24/
presentation/ryabinin.

https://www.usenix.org/event/osdi08/tech/full_papers/mao/mao_html
https://www.usenix.org/event/osdi08/tech/full_papers/mao/mao_html
https://doi.org/10.1109/SRDS.2013.15
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/3718958.3750502
https://doi.org/10.1145/3552326.3587441
https://www.usenix.org/conference/osdi20/presentation/ngo
https://www.usenix.org/conference/osdi20/presentation/ngo
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/nsdi19/presentation/park
https://www.usenix.org/conference/nsdi19/presentation/park
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-319-78375-8_1
https://ieeexplore.ieee.org/abstract/document/7579738
https://ieeexplore.ieee.org/abstract/document/7579738
https://doi.org/10.1145/2619239.2626309
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://doi.org/10.1007/3-540-60042-6_7
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://www.usenix.org/conference/nsdi24/presentation/ryabinin

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:27

91 Nicola Santoro and Peter Widmayer. Time is not a healer. In Proceedings of the 6th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS), 1989. doi:10.1007/
BFb0028994.

92 Fred B. Schneider. The state machine approach: A tutorial. In Fault-Tolerant Distributed
Computing, 1990. doi:10.1007/bfb0042323.

93 J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Ga-
derer, P. Loschmidt, J. Dedic, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch. The
White Rabbit project. In 12th International Conference On Accelerator And Large Experi-
mental Physics Control Systems, 2009. URL: https://cds.cern.ch/record/1215571/files/
CERN-ATS-2009-096.pdf.

94 Atul Singh, Pedro Fonseca, Petr Kuznetsov, Rodrigo Rodrigues, and Petros Maniatis. Zeno:
Eventually consistent Byzantine-fault tolerance. In Proceedings of the 6th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), 2009. URL: http:
//www.usenix.org/events/nsdi09/tech/full_papers/singh/singh.pdf.

95 SiTime. SiT5811 MEMS OCXO, 2024. Specs. URL: https://www.sitime.com/products/
holdover-ocxos/sit5811.

96 Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. State machine replication
scalability made simple. In Proceedings of the 17th European Conference on Computer Systems
(EuroSys), 2022. doi:10.1145/3492321.3519579.

97 Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis, Tobias
Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea, Amruta Ranade,
Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter Mattis. CockroachDB: The
resilient geo-distributed SQL database. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2020. doi:10.1145/3318464.3386134.

98 Pasindu Tennage, Cristina Basescu, Lefteris Kokoris-Kogias, Ewa Syta, Philipp Jovanovic,
Vero Estrada-Galinanes, and Bryan Ford. QuePaxa: Escaping the tyranny of timeouts in
consensus. In Proceedings of the 29th ACM Symposium on Operating Systems Principles
(SOSP), 2023. doi:10.1145/3600006.3613150.

99 Sarah Tollman, Seo Jin Park, and John Ousterhout. EPaxos revisited. In Proceedings of the
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2021.
URL: https://www.usenix.org/conference/nsdi21/presentation/tollman.

100 Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex. ACM Com-
puting Surveys (CSUR), 47(3), 2015. doi:10.1145/2673577.

101 Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tolerating Byzantine
faults in transaction processing systems using commit barrier scheduling. In Proceedings
of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles (SOSP), 2007.
doi:10.1145/1294261.1294268.

102 Bhanu Chandra Vattikonda, George Porter, Amin Vahdat, and Alex C. Snoeren. Practical
TDMA for datacenter Ethernet. In Proceedings of the 7th European Conference on Computer
Systems (EuroSys), 2012. doi:10.1145/2168836.2168859.

103 Paulo Verissimo and Carlos Almeida. Quasi-synchronism: A step away from the traditional
fault-tolerant real-time system models. Bulletin of the Technical Committee on Operating
Systems and Application Environments (TCOS), 7(4):35–39, 1995. URL: https://www.dsc.
ufcg.edu.br/~fubica/papers/FD/VA.pdf.

104 Paulo Veríssimo and António Casimiro. The timely computing base model and architecture.
IEEE Transactions on Computers, 51(8):916–930, 2002. URL: https://ieeexplore.ieee.
org/abstract/document/1024739.

105 Feiran Wang. Building High-Performance Distributed Systems with Synchronized Clocks.
PhD thesis, Stanford University, 2019. URL: https://search.proquest.com/openview/
392dfbcd9ca4a64c717ee2ca95c44738/1?pq-origsite=gscholar&cbl=18750&diss=y.

106 Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil Giridharan,
Joseph M. Hellerstein, Heidi Howard, Ion Stoica, and Adriana Szekeres. Scaling replicated

NINeS 2026

https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/bfb0042323
https://cds.cern.ch/record/1215571/files/CERN-ATS-2009-096.pdf
https://cds.cern.ch/record/1215571/files/CERN-ATS-2009-096.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/singh/singh.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/singh/singh.pdf
https://www.sitime.com/products/holdover-ocxos/sit5811
https://www.sitime.com/products/holdover-ocxos/sit5811
https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3600006.3613150
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://doi.org/10.1145/2673577
https://doi.org/10.1145/1294261.1294268
https://doi.org/10.1145/2168836.2168859
https://www.dsc.ufcg.edu.br/~fubica/papers/FD/VA.pdf
https://www.dsc.ufcg.edu.br/~fubica/papers/FD/VA.pdf
https://ieeexplore.ieee.org/abstract/document/1024739
https://ieeexplore.ieee.org/abstract/document/1024739
https://search.proquest.com/openview/392dfbcd9ca4a64c717ee2ca95c44738/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/392dfbcd9ca4a64c717ee2ca95c44738/1?pq-origsite=gscholar&cbl=18750&diss=y

26:28 Running Distributed Systems Like Clockwork

state machines with compartmentalization. Proceedings of the VLDB Endowment, 14(11),
2021. doi:10.14778/3476249.3476273.

107 Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel Cecchet.
ZZ and the art of practical BFT execution. In Proceedings of the 6th European Conference
on Computer Systems (EuroSys), 2011. doi:10.1145/1966445.1966457.

108 Xinan Yan, Linguan Yang, and Bernard Wong. Domino: Using network measurements to
reduce state machine replication latency in WANs. In Proceedings of the 16th International
Conference on Emerging Networking Experiments and Technologies (CoNEXT), 2020. doi:
10.1145/3386367.3431291.

109 Tian Yang, Robert Gifford, Andreas Haeberlen, and Linh Thi Xuan Phan. The synchronous
data center. In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS),
2019. doi:10.1145/3317550.3321442.

110 Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike Dahlin.
Separating agreement from execution for Byzantine fault tolerant services. In Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles (SOSP), 2003. doi:
10.1145/945445.945470.

111 Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K.
Ports. Building consistent transactions with inconsistent replication. ACM Transactions on
Computer Systems (TOCS), 35(4), December 2018. doi:10.1145/3269981.

112 Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. SDPaxos: Building efficient
semi-decentralized geo-replicated state machines. In Proceedings of the 9th ACM Symposium
on Cloud Computing (SoCC), 2018. doi:10.1145/3267809.3267837.

https://doi.org/10.14778/3476249.3476273
https://doi.org/10.1145/1966445.1966457
https://doi.org/10.1145/3386367.3431291
https://doi.org/10.1145/3386367.3431291
https://doi.org/10.1145/3317550.3321442
https://doi.org/10.1145/945445.945470
https://doi.org/10.1145/945445.945470
https://doi.org/10.1145/3269981
https://doi.org/10.1145/3267809.3267837

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:29

A Proof of correctness for Watchmaker

In the following, we make the standard assumption that duplicate requests can be removed
and that the state machine will execute them only once. When using line numbers in this
proof, we refer to Figure 6.

▶ Lemma 1. In every slot, exactly one packet is sent over the replica network.

Proof. Since we have assumed that nodes have unique IDs (A12), the condition in line 16
can be true for at most one replica at a time, and, given the way the schedule is constructed,
it will also be true for one of the replicas. So the send procedure is invoked on exactly one
replica in each slot, and this procedure has an unconditional broadcast command in line 26.
This is the only broadcast command in the entire algorithm; the only other transmission, in
line 34, sends responses to clients, which goes over the access network and not over the replica
network. (Recall from Figure 1 that we assume two separate networks: an access network,
which connects clients to replicas, and a replica network, which connects the replicas to each
other.) ◀

▶ Lemma 2. If a packet has been sent in slot x (at time T), over a path whose links are all
working, and does not experience corruption loss, it arrives no later than T + ∆.

Proof. Because clocks are synchronized up to some bound Φ (A7), the packets will be sent
exactly at the scheduled time, plus or minus Φ. We have assumed that there is no cross
traffic (A10) and that the topology (A9), queue lengths (A8), propagation delays (A2), and
link capacities (A3) are known, so the effects of Φ are captured by the simulation procedure
from Section 3.4. Since this procedure does not output any schedule where queue drops can
happen, the packet will make it to the destination unless it experiences a corruption loss,
and the maximum delay will be the ∆ from the simulation procedure. ◀

▶ Lemma 3. Replicas can tell when packets from other replicas are missing, after at most
time ∆.

Proof. This follows directly from Lemmas 1 and 2: since the transmission schedule is com-
mon knowledge and clocks are synchronized, each replica knows when each of the other
replicas will send a packet (up to Φ), and, at most ∆ after the last possible transmission
time, each of the other replicas has either received the packet or can be certain that it is
missing. The only possible explanations are that the sender has crashed, the link has failed,
or, if at least one of the preceding k − 1 packets from the same sender has arrived, that the
packet was lost due to corruption. ◀

▶ Lemma 4. When a replica i is alive and all links on the paths from i to the other replicas
are working, no other replica will send a DEAD(i,s) message, for any value of s.

Proof. Suppose i is alive and another replica j ̸= i does send such a message. This message
can only be sent in line 21, after being put into the ctrlWait set in line 57. But for this
to happen, j’s numOmit map would have had to contain the value k + 1 for i (line 54), and
this could only have happened if k + 1 consecutive packets from i were missing – the value
is incremented in lines 52–53, when j is missing a packet from i (which is possible according
to Lemma 3), and it would have been reset in line 43 if a packet from i had arrived. But
since all the links on the path i → j are working and we have assumed that k + 1 corruption
losses to the same destination cannot occur in a row (A4), the only way this could have
happened is if i had crashed, which contradicts our assumption. ◀

NINeS 2026

26:30 Running Distributed Systems Like Clockwork

▶ Lemma 5. Suppose that, in some execution e, a replica i crashes at time T . Let A be
the set of replicas that do not crash in e. Then every replica j ∈ A eventually receives a
DEAD(i,sq) message from every other replica q ∈ A, where sq is the highest sequence number
of any packet that q has received from i.

Proof. The first step is roughly analogous to the argument for Lemma 4: if i crashes, the
numOmit counter for i on each j ∈ A will eventually reach k + 1, at which point k + 1
DEAD(i,s) messages will be added back-to-back to j’s ctrlWait queue in line 57. Since
send is invoked periodically and will send the first message from ctrlWait when invoked,
and since ctrlWait is a FIFO queue, these k + 1 DEAD(i,s) messages will eventually be
broadcast on the replica network back-to-back. And since we have assumed that no k + 1
broadcasts from the same sender will be lost (A4), at least one of these messages will make
it to each q ∈ A. The claim about the sq follows directly from the way the value is computed
in line 55. ◀

▶ Theorem 6 (Agreement). If a replica i broadcasts a request r over the replica network,
then eventually either 1) all live replicas have received a copy of r, or 2) both i and all other
replicas that have received a copy of r will crash.

Proof. Suppose the opposite is true – that is, i has broadcast r, and some replica q (possibly
i itself) has a copy of r and remains alive, but there is some other replica j ̸= i that never
crashes and never receives r.

Let x be the first sequence number of any packet that j has not received. Notice that,
whenever a replica broadcasts a packet to the replica network in line 26, it includes a “high
water mark” myHighWater. Our first goal is to show that myHighWater will eventually reach
x − 1. The number starts at −1 and is increased in the bookkeeping procedure, in line 71.
It would not reach x − 1 if the condition in line 69 were true – but this would mean that
some other packet with an earlier sequence number than x is missing, which contradicts
our assumption. So myHighWater will eventually reach x − 1 and stay there, because the
condition in line 69 would prevent it from being incremented further.

Next, notice that myHighWater is included in every single packet j sends – the only
transmissions to the replica network are made in send (line 26) and, since each replica has
at least one slot in the transmission schedule, send is invoked periodically. According to
assumption A4, every other live replica, including q, will have received a packet with this
value after at most k +1 transmissions. But when q receives this transmission, it will notice,
in line 47, that j’s myHighWater has not advanced as expected. q will have put r into its
execWait set in line 44, when it first received it; although packets are eventually deleted
again from this set in line 31, this would not have happened yet because packets are deleted
only when their sequence number is smaller than the high-water marks from all the live
replicas (the safe value in line 29). So q still has the packet in its execWait set, and
it will put a copy into ctrlWait in line 48. Because ctrlWait is a FIFO queue and its
contents have the highest priority for transmission, this copy will be transmitted eventually.
It could be lost to corruption, but since j’s high-water mark does not advance, q would keep
retransmitting copies, and according to assumption A4, either j eventually receives one or q

crashes. This contradicts our assumption, so we conclude that the claim does hold at least
for the request with sequence number x.

Our remaining proof goal is to show that the high-water mark eventually reaches r’s
sequence number. This is not obvious a priori because, if x is smaller than r’s sequence
number and option 2) from the lemma applies to x, the first condition in line 69 (the arrival
of a packet with sequence number x) will not be sufficient to increase the high-water mark.

K. Newatia, R. Gifford, Q. Lu, A. Haeberlen, and L. T. X. Phan 26:31

However, the high-water mark is also increased when 1) the expected sender (let us call it
y) has been removed from j’s alive set, and 2) the sequence number is higher than y’s
entry in the termSeq map. But in order for y to be removed from alive in line 63, j would
have had to receive DEAD(y,s) messages from all other live replicas (see line 61), and the
termSeq entry would have been set to the highest sequence number that any live replica has
received from y. (The replica that did receive this sequence number could have subsequently
crashed as well; this is why termSeq is adjusted after every new crash, in line 65.) If x is
smaller than this sequence number, some other replica still has a copy of the packet and will
retransmit it eventually; if x is larger, the second condition in line 69 will hold. Either way,
the high-water mark will continue to be increased and will eventually reach r’s sequence
number. At that point, the generic argument we have made for an arbitrary x will also hold
for r’s sequence number, and thus either j eventually receives a copy or all other nodes that
have a copy of r will crash. ◀

▶ Theorem 7 (Liveness). When a client sends a request and can reach at least one live replica
(A6’) or a quorum of the replicas (A6), it will receive at least one response eventually.

Proof. If the client does not receive a response to its request r, it will time out and try the
replica (see Figure 3). Since at least one replica is alive and reachable from the client, that
replica will eventually receive a copy of the request. Let us call this replica i.

i will append the request to its sendWait queue in line 37. However, this does not
necessarily mean that it will ever be broadcast over the replica network, because in send,
messages from ctrlWait have higher priority. But notice that only two kinds of messages can
be put into ctrlWait: DEAD messages and retransmissions. The number of replicas is finite,
and the death of each replica can cause only k +1 DEAD messages to be added to ctrlWait
(line 57), so these messages cannot delay r’s transmission forever. But retransmissions
cannot either, because of Theorem 6, which shows that the live replicas cannot be “stuck”
with retransmissions forever. True, i’s own sendWait queue may never get to r in the
unlikely event that there are lots of losses, but even then, some other replica will be making
progress, and the client will eventually try that replica instead. So we conclude that r will
eventually be broadcast on the replica network.

But once r has been broadcast, we know from Theorem 6 that eventually all the live
replicas will have a copy. They will eventually increase their high-water marks past r’s
sequence number, at which point r will be executed in line 33; dead replicas would not
increase their high-water marks but would be removed from highWater in line 64. (In fact,
line 33 could be reached for more than one copy of r, if there were retransmissions, but we
have assumed that duplicates can be filtered out.) And once that happens, each live replica
will send a response to the client in line 34. ◀

▶ Theorem 8 (Ordering). If two replicas i and j execute two requests r1 and r2, then they
will both execute the requests in the same order.

Proof. Requests are executed in the order of their sequence numbers, so this claim follows
by construction. ◀

▶ Theorem 9 (Validity). If a client receives more than one response to the same request, the
responses will be identical.

Proof. This follows directly from Theorem 8 and the standard assumption that the state
machine is deterministic and starts in the same state on all replicas. ◀

NINeS 2026

	1 Introduction
	2 Overview
	2.1 Physical-layer loss is rare
	2.2 Clock can be closely synchronized
	2.3 The quasi-synchronous model

	3 Watchmaker
	3.1 Fully synchronous protocol
	3.2 Finite capacities
	3.3 Point-to-point links
	3.4 Imperfect clock synchronization
	3.5 Occasional packet losses and crash faults
	3.6 Link failures and partitions
	3.7 View changes

	4 Implementation
	5 Evaluation
	5.1 Experimental setup
	5.2 Latency vs. throughput
	5.3 Tail latencies
	5.4 Scalability
	5.5 Recovery from faults
	5.6 Dynamic workload
	5.7 Custom kernel vs. Linux
	5.8 Application: KVS

	6 Related Work
	7 Conclusion
	A Proof of correctness for Watchmaker

