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Abstract
Low Latency, Low Loss, and Scalable Throughput (L4S), as an emerging router-queue management

technique, has seen steady deployment in the industry. An L4S-enabled router assigns each packet
to the queue based on the packet header marking. Currently, L4S employs per-flow queue selection,
i.e., all packets of a flow are marked the same way and thus use the same queues, even though each
packet is marked separately. However, this may hurt tail latency and latency-sensitive applications
because transient congestion and queue buildups may only affect a fraction of packets in a flow.

We present SwiftQueue, a new L4S queue-selection strategy in which a sender uses a novel
per-packet latency predictor to pinpoint which packets likely have latency spikes or drops. The
insight is that many packet-level latency variations result from complex interactions among recent
packets at shared router queues. Yet, these intricate packet-level latency patterns are hard to learn
efficiently by traditional models.

Instead, SwiftQueue uses a custom Transformer, which is well-studied for its expressiveness
on sequential patterns, to predict the next packet’s latency based on the latencies of recently
received ACKs. Based on the predicted latency of each outgoing packet, SwiftQueue’s sender
dynamically marks the L4S packet header to assign packets to potentially different queues, even
within the same flow. Using real network traces, we show that SwiftQueue is 45-65% more accurate
in predicting latency and its variations than state-of-art methods. Based on its latency prediction,
SwiftQueue reduces the tail latency for L4S-enabled flows by 36-45%, compared with the existing
L4S queue-selection method.
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1 Introduction

Internet Service Provider (ISP)-supported QoS enhancement in wide area networks has been
long-awaited. Fortunately, the gradual yet steady deployment of L4S in ISPs over the last few
years enables sender-driven queue selection on the network routers [16, 14, 58, 50, 6]. The
sender marks the outgoing packet headers of L4S-enabled flows, while the L4S-enabled routers
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Figure 1 To reduce tail latency, SwiftQueue predicts latency per packet and choose the appropriate
queue for each packet.

along the path will use different queues for these packets depending on the marked headers.
With this new capacity, the sender could mark the packets in a way such that packets that
would otherwise experience high latency can now go through alternative lower-latency queues,
potentially reducing the tail end-to-end latency for low-latency applications.

As with many previous sender-driven queue selection techniques (e.g., [29, 5, 92]), L4S
marks all packets of a flow in the same way, i.e., all packets in a flow are assigned to the
same queue. Yet, even within a flow, it is beneficial to select queues differently for different
packets, as the latency of a router queue can temporarily increase or decrease significantly.
Drastic changes in latency may occur due to inter-packet interactions on a shared network in
a short time window [49], which can cause sudden changes in the network state. Realizing
the full potential of L4S’s sender-driven queue selection thus requires predicting precisely
when latency spikes and drops happen at the per-packet level.

Predicting sudden, per-packet latency changes is a longstanding challenging problem [61,
60, 90, 48]; and most congestion control and queuing schemes only react to packet-level latency
changes. Inspired by the Transformer’s success in other time-series domains (e.g., natural
languages) [89], we view the sequence of packets and their latencies as a token sequence, and
ask a simple question: can Transformers learn to predict packet latency accurately enough to
allow L4S to proactively reduce tail latencies for low-latency applications?

This paper shows that Transformers when trained appropriately, can predict sharp latency
changes much more accurately than prior methods, even when tested on network traces
unseen in training. This stems from the observation that while some latency variations are
indeed due to exogenous factors (e.g., user clicks), not all changes are. It is possible to have
some learnable events in the network indicated by signals embedded in the latencies of the
past packets. For instance, video applications (e.g., Netflix or Zoom) can have periodic
packet bursts of video chunks or frames within a session, and these flows can have some
learnable patterns for their latencies [4, 70]. For another example, the interaction of packets
from running flows using certain congestion control logic can result in learnable latency
patterns (e.g., queue buildup and back-off in TCP Cubic [32]). Of course, the real latency
patterns can be more complicated than these simple examples.

Learning to extract signals from past packets’ latencies has been challenging for traditional
time-series models. Specifically, simple models (e.g., EWMA [65], ARIMA [87]) can learn



S Ray et al. 24:3

seasonality and smooth past values, but they fall short of capturing more complex and
finer-grained inter-packet dependencies [98]. Deep learning models offer better learning and
expressiveness, but training and updating these models can be slow and data-intensive [45, 11].
The Transformer’s unique advantage comes from its parallel attention mechanism, which
simultaneously captures complex sequential patterns within a long context window and allows
faster training and convergence than pre-Transformer neural networks, e.g., Recurrent Neural
Networks (RNNs), Long-Short Term Memory Networks (LSTMs) [35] For these reasons,
Transformers have shown great promise in general time-series predictions [68, 104, 106, 94].

Inspired by this, we present SwiftQueue, a new L4S queue-selection system driven by a
custom Transformer for per-packet latency prediction. SwiftQueue has two components: (1)
a Transformer that predicts next outgoing packet’s latency based on information (latencies
and queue selections) of recent packets from the same sender, and (2) a queue-selection logic
that uses the Transformer-based latency prediction to select the queue for outgoing packets
in an L4S flow and marks the packet headers accordingly so that L4S-enabled routers will
put the packet in the corresponding queues. As illustrated in Figure 1(b), since SwiftQueue
assigns queues per packet rather than per flow, it can reduce tail latency.

SwiftQueue presents the first effort to adapt Transformers for packet-level latency pre-
diction. Our custom Transformer focuses on neighborhoods of sharp changes and learns to
predict the latency of future packets based on the timeseries of past latencies and packet
information. Unlike prior uses of Transformers in networking [18, 31, 52, 27], which focuses
on flow-level estimates or classification, our goal requires learning latency patterns due to
cross-flow interactions at the packet level and making fast prediction per packet.

Contributions

In short, we make the two contributions:

1. First, we show that our Transformer predictor, which is continuously fine-tuned using
past packet latency values, can accurately predict latency spikes or drops 45-65% more
accurately than the state-of-the-art methods. Moreover it can make per-packet latency
prediction fast enough for a 200-Mbps link by making batched predictions.

2. Second, we show that, using SwiftQueue, a sender can significantly reduce the tail latency
by 36-45%, by first predicting the latency of each outgoing packet in the L4S flow if it
goes through the L4S queues or classic queues and then marking each packet for queue
selection such that its predicted latency is minimized.

2 Background

2.1 Queue selection and management
L4S dual queue

L4S is already being rolled out for deployment at scale [14, 58, 50, 6] and is expected to be
the dominant solution for reducing queuing latency for low-latency applications (e.g., cloud
gaming) and networks (low-latency 5G/ISP). The L4S Dual Queue [78, 7, 79] is developed to
mitigate bufferbloats and excessive queuing latency in networks. With the L4S Dual Queue,
the sender tags a packet header’s ECN bit [21] to indicate if a packet should go through
the “Classic” queues or the “L4S” queues in the L4S-enabled routers (Figure 2). To sort
the traffic into each of the two queues correctly, the L4S dual-queue relies on packets being
tagged appropriately. This enables different rules for ECN marking and/or dropping in each

NINeS 2026
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Figure 2 L4S by default marks all packets from the flow into the same queues, and once marked,
packets traverse the chosen queues at all hops.

of the queues. That said, currently, L4S senders only select queues per flow/application
based on the application’s nature (video or web) or user preference.

Active queue management (AQM)

Before L4S, AQM has already been an active area of study for decades to ensure the efficient
co-existence of TCP flows. Several AQM methods have been proposed for optimising different
aspects, including queuing latency reduction, such as Random Early Detection [23], CoDel [67]
and FQ-CoDel [36]. Traditional AQM algorithms have been built to run in conjunction with
TCP congestion control algorithms, which rely only on packet loss as a signal (as opposed to
L4S, which uses ECN markings). To handle the bursty nature of TCP, these AQM techniques
are equipped with large data buffers to prevent excessive packet drops due to these bursts.
However, bufferbloat arises when queue length grows [26], and latency can often build up as
a result of individual bufferbloats at multiple routers on the network path. As traditional
AQM techniques do not allow per-packet queue selection, they are unsuitable for low-latency
applications where latency spikes happen at the packet level.

2.2 Related work
Latency prediction

Latency prediction in networks has been studied for decades. Most recent work focuses on
estimating latency values at the flow level (e.g., flow completion times or average packet
latency in a flow) using heuristics [103, 25] or deep learning [52]. There has also been work
on measuring latency for network performance estimation at scale [44, 73, 30]. Other works
have focused on predicting latency from noisy and incomplete network measurements [86].
Finally, latency prediction has been actively explored at the application level for video
streaming [53, 96], HTTP web traffic [37, 69], cloud datastores [84], and CDN serving [101].

Machine learning for network traffic analysis

Recent advancements in machine learning and deep learning have significantly impacted
network traffic analysis for various tasks, from conventional anomaly detection and traffic
classification [42, 59] to more complex behavior characterization [8] and traffic content
forecasting [41, 40]. Various approaches have been proposed, including conventional models
like simple regression and tree-structured classifiers [43, 51, 1], as well as advanced deep
learning techniques such as recurrent neural networks (RNNs) [46, 74], convolutional neural
networks (CNNs) [57] and diffusion models [82, 40]. These methods have shown promise in
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understanding patterns in network traffic data but often fall short in handling long-range
dependencies and sharp changes in traffic patterns [3, 39].

Transformers have been proposed as a new class of models to reason about more complex
sequential dependencies in a variety of fields. In the networking domain, the Transformer
architecture has already shown promise in predicting flow-level behaviors [18, 31, 52], telemetry
signals [27], and other time-series [93]. They have also been used recently to generate network
traffic [63, 105] and analyze traffic behaviour at the flow level [100]. These architectures use
decoder-based Transformers to generate packet headers with semantically correct header
structure but often lack temporal inter-packet patterns. Predicting actual packet latency
values is different from generating packet headers. We need to learn packet dependencies
within flows and across flows from an endpoint, which the models above do not address yet.

In short, we summarize the background as follows:

1. Prior sender-driven queue selectors, including L4S’s header marking strategy, only selects
queues per flow/application as it does not predict packet-level events.

2. Transformers have shown promise in some networking problems but not for per-packet
latency prediction.

3 Motivation

Inspired by the Transformer’s promise, this work applies the Transformer to packet-level
queue-selection in L4S. Importantly, our work is focused on queue selection at the sender
and without changing the L4S routers or the sender’s congestion control logic.

3.1 L4S queue selection: per-packet vs. per-flow
Mechanically, L4S AQM architecture allows the sender to mark each packet in a flow
differently into different queues, but by default, all packets of a flow are either sent through
the classic queues or the L4S queues. This can be suboptimal. For example, if the network
has more low-latency flows than classic traffic flows, L4S will, by default, put all packets
from low-latency flows on the L4S queue on the bottleneck router, causing the L4S queue to
build up and create additional queuing latency for low-latency flows.

Current L4S vendors pre-partition queues for classic and L4S traffic for a given link
subscription. The L4S queue is designed to be much shorter as L4S latency-sensitive traffic
has been measured around 10-20% of the overall network traffic.2 However due to these
fixed size queue allocations, if latency-sensitive traffic becomes capacity seeking on the link
even for a short window, packets which would experience high-latency can be switched to
the classic queue. This prevents L4S flows from experiencing latency spikes which would
adversely have affected application-level Quality-of-Experience (QoE).

This way, one could potentially reduce tail latency by focusing the use of L4S queues on
only the packets with high latency due to transient queue buildup and congestion. Such
per-packet queue selection could particularly benefit the flows that have stringent tail-latency
requirements and only share a part of the entire network path with the other flows. For
example, if we have some L4S flows at a given router, which has packets that would experience
further downstream congestion (due to cross traffic), we can select a non-congested queue for
those packets at the current router, minimizing the tail latency as a result of those packets.
We evaluate this in detail in §6.3.

2 Data collected after conversation with a leading US telecom vendor deploying L4S on their network.

NINeS 2026
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Figure 3 A Transformer maps the inputs of low-latency packets and those of high-latency packets
to separate clusters.

With a per-packet latency predictor, we can predict which packets in the low-latency
flows would experience high latency and then mark them to let the router put just these
packets into a different, lower-latency queue (classic queue) than other packets in the same
flow, which reduces the tail latency. Meanwhile the current L4S queue would have been
serviced and we can continue to put the next incoming packets back on the L4S queue after
its queue length becomes low.

3.2 Latency prediction needs expressive models

To enable packet-level queue selection, per-packet latency prediction is essential, especially
when latency spikes and drops happen. Classical ML models have been shown to perform
poorly at capturing sudden variations in time-series [107]. Neural network models are
superior at learning complex feature relationships in time-series data as they have much
greater memorization and reasoning.

The core innovation of Transformers is the self-attention mechanism [89], which allows
the model to weigh the importance of different elements (tokens) in a sequence when making
predictions. The self-attention mechanism works by computing a weighted sum of input
elements, where the weights are determined by the relevance of each element to the current
prediction. This allows focusing on different parts of the input sequence in an adaptive
manner, enhancing its ability to capture dependencies and interactions.

Transformers have shown promise as a superior tool for general time-series prediction
tasks [54, 56, 68, 104, 106, 94], leveraging the ability of the attention mechanism to capture
complex temporal patterns much better than other deep learning models. Transformer’s
attention mechanism offers greater memorization of past interactions [95]. While other deep
learning models like LSTMs and RNNs have been used for time-series prediction, they suffer
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Figure 4 SwiftQueue consists of a custom Transformer latency predictor and a prediction-driven
per-packet queue selector.

from well-studied issues of memory limitations [38, 83] and vanishing gradients [55, 71] which
reduces their prediction accuracy and training speed.

To showcase that a Transformer, even at a small size, could capture the complex patterns
before latency changes, Figure 3 visualizes the intermediate feature space of different Trans-
former inputs. This Transformer, which has 2 layers (will be described in more detail soon),
predicts a given packet’s latency based on recent packets’ latencies as input. The intermediate
feature, a 64 × 64 tensor, is visualized by first mapping the tensor to a two-dimensional space
using t-SNE [88].

As an example, we consider two particular different packet latencies under prediction.
While their inputs may seem similar (the blue box and the yellow box), their features
produced by the Transformer fall in well-separated clusters. Specifically, for the very first
packet after a latency spike (the blue point), the Transformer already maps them to the
correct feature region, even if significantly increased or decreased delay is not visible in
their inputs. In other words, even though their inputs have little noticeable difference to
packets prior to the spike/drop, the Transformer can tell the difference from the distribution
embedded in the values!

4 SwiftQueue Design

Now, we present SwiftQueue, a Transformer-based L4S queue selection system. As depicted
in Figure 4, SwiftQueue has two components: a Transformer as a per-packet latency predictor
and a prediction-driven proactive L4S controller.

While L4S can benefit from per-packet queue selection, for which Transformers could be
a good fit, making SwiftQueue practical creates challenges in both of its components.

Per-packet latency prediction (§4.1)

1. Sharp latency changes, due to their rarity, are more difficult to predict, but they are
also crucial as they are when proactive queue switching is most useful. How to make
SwiftQueue predict sharp latency changes accurately?

2. Transformers are workload-dependent, so it must be able to update itself with the new
latency measurements frequently. How to fine-tune SwiftQueue’s Transformer with the
latest measurements with minimum overhead?

NINeS 2026
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Queue selection controller (§4.2)

1. To inform per-packet marking, the latency prediction must be fast. How can SwiftQueue
make predictions fast enough without sacrificing its accuracy?

2. Straightforward prediction-driven control can cause oscillation as it may assign too many
packets to a seemingly low-latency queue before their ACKs are returned. How can
SwiftQueue prevent such oscillation?

4.1 SwiftQueue’s latency predictor
Transformer basics

Transformers can learn sequentially dependent information at scale using the parallelized
attention operation. The attention module removes the need to explicitly model the sequence
for learning relationships. Instead, it utilizes a weighted dot product matrix, which assigns
importance to a sequence value based on its relative importance to all other values. This
matrix is updated during training to understand sequential dependencies between different
values. While they work well for general sequence prediction tasks, to effectively perform
latency prediction, we make several custom changes to adapt to the challenges of network
packet sequences and traffic patterns.

Predicting sharp changes, not values

In network packet traces, we may have a series of packets with similar delays, interspersed
with occasional sharp changes in latency. A sharp change often results from increased queuing
latency as the queue might be occupied by packets from a competing flow. It is useful to
select a lesser-filled queue for packets that would have otherwise experienced such an increase
in queuing latency. Hence, we want the model to focus on learning to predict these sharp
changes instead of predicting every latency value when latency changes smoothly.

More specifically, in this paper, we define a sharp latency change as at least 20ms difference
and a relative 20% difference between two successive packet latencies. We choose these values
as in practice, a change of 20 ms and higher starts being observable for low-latency sensitive
applications like VoIP [91] and cloud gaming [15] on ISPs.

4.1.1 Focusing on sharp changes with new loss function
Why not standard loss functions?

Standard deep learning models often use loss functions such as the Mean Squared Error
(MSE) to train the models, to make the predicted value closer to the ground truth. This
helps the model in learning patterns in the input data over average trends in the input.
However, these traditional loss functions, such as the MSE, try to reduce prediction errors
everywhere [97], rather than focusing on sharp changes. As we just discussed, SwiftQueue
needs the Transformer architecture to specifically target the neighbourhoods of sharp changes
and accurately predict them for better packet-level queue selection. Thus, the key question
is, how to make SwiftQueue focus on sharp latency changes?

Focusing loss function on change points

For this, we design a custom loss function based on the original MSE loss. We employ a
scaling factor to the loss, in the case the absolute difference successive latency of two values
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is greater than a given threshold (i.e., a sharp latency). This helps the model give greater
attention to this neighbourhood, and the increased difference in latency signifies the sudden
drop or spike in latency. For a given prediction p(x) and a target value t(x), we define the
loss function LF as

LF (p(x), t(x)) =
{

α · (p(x) − t(x))2 , if |t(x) − t(x − 1)| ≥ δ

(p(x) − t(x))2 , otherwise

Our loss function LF has two hyper-parameters: α as the penalizing factor, in case there
is a sudden change in latency greater than δ. The optimal choice of these values can vary
with applications. SwiftQueue’s current design chooses α = 10 and, following our definition
of sharp changes (§4.1), δ is at least 20 ms difference in addition to at least a relative 20%
difference between two successive packet latencies. We observed that the SwiftQueue can
learn well under this design.

This loss function does come with a trade-off: it has a slightly higher mean prediction
error averaged over all packets, but is able to accurately predict many more of the sharp
changes than if the model is trained with traditional MSE-based loss function. We show this
in §6.3. For our L4S queue-selection, we need SwiftQueue’s predictor to accurately predict
latency spikes and drops for packet-level queue selection.

4.1.2 Fast online model fine-tuning

We train the SwiftQueue to learn the interaction between packets from their implicitly
embeddings in the packet sequence. These interactions can significantly change with changing
traffic patterns. For example, if new flows start, flow interactions can significantly change.
Adapting to such concept drift is necessary for a model like SwiftQueue.

The Transformer architecture is known for its fine-tuning efficiency compared to other
neural network models. It can perform comparatively fast model updates, but the fine-tuning
speed of traditional Transformers (e.g., used for language modeling) is still too slow for
packet-switched networks. Commonly used Transformers take tens to hundreds of minutes
to fine-tune [75], which is too slow to keep up with changing network traffic. We observed
that to use SwiftQueue’s predictions on long traces with new flows, fine-tuning the model is
needed for continued correct sharp change predictions.

To further speed up fine-tuning, we design the Transformer architecture to have fewer
trainable parameters with two Transformer Encoder-based attention block layers followed by
two linear layers derived from the PyTorch [72] implementation. In total, it has ∼ 100K

trainable parameters. This is much smaller than most Transformer models over the years,
which have parameters in the order of 100M − 400B [17, 20, 19]. To further speed up the
fine-tuning, we update only the linear layers (includes activation) of the model as SwiftQueue
has already learnt the representation of latency changes and just needs to focus on new
interactions in the recent network state.

To minimize the compute overhead of fine-tuning, we do not want to fine-tune excessively
with marginal gains as we want to prevent resource wastage. To find a reasonable fine-
tuning interval, we independently measured the performance at different fine-tuning intervals,
starting from the same pre-trained model. We found a common regular interval which
performs well across our workloads. We evaluate this in §6.3.

NINeS 2026
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Figure 5 SwiftQueue’s architecture with showing its context window, multiple attention blocks
and linear layers.

4.1.3 Input features of the latency predictor
In addition to our customization of the loss function and the model architecture, we also take
care in designing the input of SwiftQueue’s latency predictor. As part of the Transformer’s
input, the end-to-end latency of each acknowledge packet includes the queuing delay of the
packet and the propagation delay on the link. Thus, the latency value is influenced by the
interaction between packets on the network, and it reflects the effect of events queue buildup,
congestion, and packet loss.

That said, the past latency values alone are insufficient to make SwiftQueue learn
effectively.

Input features beyond just latency values

The parallelized attention mechanism lose the explicit position of each item in the sequence
and must be supplied with this information externally in the form of positional embeddings.
Positional embeddings can take many forms [80, 89, 24]. Fortuitously, network traces naturally
provide the positional information with packet timestamps. We use the relative timestamp of
a packet with respect to the first packet of the flow as our absolute positional information.

Moreover, we discovered that only using past latency values and timestamps does not
provide enough context about the network for learning latency prediction. We select a few
more features in order to indicate the state of the network. Inspired by the authors in [18]
where they show the need to jointly look at both packet-level and network-level features, for
SwiftQueue we choose the following features as input to supplement packet latency values
and timestamps.

packet_size: The packet size along with the timestamp implicitly helps SwiftQueue
understand the real-time sending rate. The size of the packet affects the number of
packets which can be accommodated in the queue buffer, e.g., larger packets means fewer
packets are present in the queue. Using the packet size helps SwiftQueue understand
packet interactions inside the queue better.
flow_id: Assigned to all packets of the same flow with the same value, the flow_id lets
SwiftQueue distinguish between the packets from different concurrent flows from the same
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sender.3 This helps SwiftQueue understand interactions of packets between flows better.
receiver_id: Assigned to all packets being sent to the same receiver endpoint, the
receiver_id helps SwiftQueue understand which packets likely traverse the same path
and the effect of different path latencies.

It is true that adding more features may further improve learning, but these features are
already sufficient for SwiftQueue to learn to predict latency at the sender.

History context window size

General Transformers scale quadratically O(n2) with input sequence size n (in tokens).
However, sequences in network traces are often over 1000s of packets in length for a trace
measured over a few seconds. Since learning from extremely long sequences can scale poorly,
we need to choose how many packets into the past do we have to look into to learn sharp
latency changes?

Since sharp latency changes in packet sequences are often constrained to localised neigh-
bourhoods of effect (e.g., a queue fills up and drops packets), we observed in practice we can
use shorter histories of packet sequences to train SwiftQueue’s predictor. In particular, we
use a sliding window approach, where we train the Transformer on smaller sliding windows
of history size rather than the entire trace, reducing the quadratic scale factor.

Rather than choosing a fixed window size, SwiftQueue matches the sliding window size to
the maximum bandwidth-delay product (BDP) of the link. This roughly covers the number of
in-flight packets in the network at all times and we observed that packets which are queued
together have greater interaction over the current network state. For example, a recent
packet history of 1−2×BDP can signal queue buildup. We can dynamically adapt the sliding
window during training to match changing BDP values for various network conditions. We
allow SwiftQueue to learn these interactions over multiple sliding windows. Of course, our
choice of history window size may not be optimal, and more research will be needed to pick
the optimal window size.

4.2 SwiftQueue’s L4S queue selection
We design SwiftQueue to predict latency and act as a packet-level controller for queue
selection at the sender. After SwiftQueue predicts whether a set of subsequent packets is
likely to experience high latency, we leverage the L4S’s packet header marking to influence
the queue selection at L4S dual-queue routers. We explain this in more detail next.

L4S queue selection with SwiftQueue

Current L4S queue selection involves putting all packets from a given L4S flow into the
same queue. Yet, recall that this approach can be problematic when dealing with localised

3 SwiftQueue’s current design requires the visibility of the latency and L4S decision on all packets being
sent out from the same end-point in order to make accurate predictions. Note that this does not require
visibility into each flow’s internal TCP state machine. Implementing this in the Linux kernel requires a
new module that can access multiple TCP streams. While we do not focus on the exact implementation
of such a module in this paper, several recent works [66, 99, 28] have developed a centralized TCP CC
plane, which views multiple data paths and integrates a central feedback loop. Several of these already
have Linux kernel integration. Compared to these efforts, our design has a much simpler requirement—it
only needs to look at flows from the same endpoint. Thus, we believe a portion of an existing centralized
TCP CC module can be reused by us for SwiftQueue.
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increasing cross-traffic congestion in a short window (§3.1). Such events result in higher
packet latency, pushing up the tail latency. Predicting packet-level latency at the sender
enables marking packets within a flow to be put into different queues to reduce latency.

In practice, L4S routers are designed to respect ECN markings. Thy are configured
to handle both classic flows (i.e., non-L4S flows with packets are marked non-ECT) and
L4S flows (packets marked as ECT ). Once packets of a flow are marked, every L4S-enabled
router downstream respects the packet marking. L4S traffic is sent using DCTCP based
TCP Prague, with all packets are marked as ECT. L4S enabled routers at every hop, ensure
that ECT marked traffic is placed on the L4S queue and all other traffic is placed in the
classic queue. If a router does not have L4S support all traffic is placed in the classic queue.

For a set of L4S flows from a sender, SwiftQueue predicts sharp latency spikes for
future packets based on the learnt effects of packet interaction. Based on the prediction,
SwiftQueue’s controller makes a simple decision in order to reduce the queuing latency on the
L4S queue on the bottleneck router. It changes the individual packets within the flow which
have high predicted latency to have non-ECN markings in the IP header. These packets will
then be put on the less-congested classic queue on the bottleneck router. This reduces the
queuing latency experienced by these L4s flows.

We acknowledge that if both queues are at capacity, changing the queue will not reduce
latency. For this paper, we focus on reducing the tail latency for L4S flows, when the classic
queue is relatively less congested. We also do not change the router behavior or modify the
sending congestion control (CC) logic. Instead, we only perform queue selection. As a result,
SwiftQueue’s reduction of tail latency should have little negative effect on throughput.

4.2.1 Fast queue selection for in-time predictions

In order to use the SwiftQueue’s predictions for L4S queue selection, the predictions need
to be fast enough. This means we need to make the decision before it is time to send out
the packet. High link speeds and data rates require an extremely fast inference (for both
prediction and control logic). Waiting for the last packet to make a prediction is not always
scalable at the packet level with increasing link speeds.

To solve this, we make batched predictions. Like in standard Transformers, batching
increases the throughput with a negligible increase in inference delay because running the
model on one input does not fully utilize the compute resource. We make latency predictions
for a future batch of packets, given the latency values of the preceding packets. By increasing
the batch size for predictions, the inference latency at the per-packet level is reduced. Since
the prediction for a future packet is made a few packets earlier, SwiftQueue’s controller has
time to account for the inference delay and the control logic, in order to make a decision for
the packet before it is sent out. Figure 6 shows an illustrative example. We need to make
the prediction for packet 12-14, as one prediction batch, by seeing up-to packet 8 in order to
ensure we send out packet 12 in time.

However increasing the batch size beyond a point does come at the cost of reduced
prediction quality. SwiftQueue’s current implementation finds a balance point where it
supports a large enough prediction batch for in-time predictions on fast ISP links, without
significant drop in quality. Currently SwiftQueue’s predictor is fast enough to make predictions
for real networks like ISPs etc. running its typical applications (e.g. YouTube video streaming
at 1080p). We can predict upto a batch size of packets (upto 8 future packets) within 200−400
µs of inference latency without noticeable reduction prediction quality. This is fast enough
for predictions and decisions in time for link speeds of upto 200 Mbps.
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Figure 6 An illustration of two main ideas. (1) SwiftQueue speeds up inference by batching,
e.g., Prediction of Packet 12-14 is done simultaneously as a batch, though the prediction delay
precludes the use of the information between Packet 9-11. (2) SwiftQueue prevents prediction-driven
oscillation by incorporating un-ACK’ed packets in the prediction input, e.g., although Packet 6-8 do
not have latency values yet, but by incorporating their queue selection in the input, the predictor
knows how many packets have been assigned to each queue.

4.2.2 Preventing oscillation in selected queues
Finally, pure prediction-driven control often leads to unstable outcomes. It is possible that
SwiftQueue’s queue selection controller can incorrectly select a particular queue for a packet
if it only uses information from packets which have been ACKed. If SwiftQueue has not
received enough recent acknowledgments (ACKs) for the previously sent out packets, it may
not select the queue correctly as it does not have the most recent network state information.
This can cause SwiftQueue to overfill a particular queue and increase the latency.

To prevent this, SwiftQueue’s queue selection controller additionally uses a combination
of (1) latency values of packets that have been ACK’ed and (2) packets that have been
marked with queue-selection decisions but have not been ACK’ed. A combined view of these
factors helps SwiftQueue decide if the packet should be finally put on a particular queue in
case the previous latency values are missing. We illustrate this in Figure 6. For instance,
SwiftQueue’s queue selection for packet 12 looks at both past packets with latency values
(packet 1 - packet 5 ) and at the queue selection on un-ACK’ed packets (packet 6 - packet 8 )
in order to select the queue for the given packet. Even though we do not know the latency of
the un-ACK’ed packets, they still provide vital information about at least how many packets
have been assigned to each queue. This information is helpful for SwiftQueue to prevent
oscillation in its queue selection decisions.

5 Implementation

We implemented SwiftQueue’s predictor and L4S queue selector in 1500 lines of Python code
using PyTorch [72] and Lightning [22]. We build on an existing NS-3 official implementation
of L4S [34]. The L4S applications within NS-3 were implemented in 500 lines C++ code.

For training and inference we use a single TITAN RTX 3080 with 10 GB memory with a
peak memory utilization of 2GB. This is much cheaper and less powerful compared to GPUs
used to train Transformers today. For comparison, LLMs today use multiple H100 GPUs for
training, and even a single H100 GPU has 10 − 12× higher memory and has > 100× higher
price than what we use to run SwiftQueue.

As we train for prediction tasks, we only use the Transformer Encoder layers to learn
representation similar to the literature on Transformers for time-series as introduced in
Section 2.2. We use the ADAM [47] optimizer with its default parameters of β1 = 0.9,
β2 = 0.98 and ϵ = 10−9.
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Trace Name Description Median Latency Trace Duration Flow Duration # flows

(ms) (min) (s) in trace

video_wifi Netflix traffic captured on a WiFi endpoint 70 30 29 - 386 28

web_wifi Facebook traffic captured on a WiFi endpoint 66 30 27 - 172 42

video_eth Netflix traffic captured on an Ethernet endpoint 74 30 48 - 362 31

web_eth Facebook traffic captured on an Ethernet endpoint 57 30 35 - 212 47

Table 1 Summary of the collected traces on the WiFi and Ethernet endpoints

We use dropout rate of 0.2 for both the Transformer and the linear layers and ReLU [33]
activation for non-linearity. We also employ a weight delay of 1ϵ−5 to help with regularization
and reduce over-fitting. We vary the learning rate based on the original Transformer
paper [89] as l_rate = d−0.5

model · min(step_num−0.5, step_num · warmup_steps−1.5) with
setting warmup_steps = 2000, based on empirical testing.

We have an initial pre-training time of 5 - 10 minutes on the real traces collected in
Table 1. We do not optimize the pre-training time as it is a one-time cost. We instead focus
on fine-tuning and inference speeds, as they are of greater, practical significance since the
models need to be frequently updated (more details in §6).

Finally, we use separate data for training, fine-tuning, and testing, i.e., no data pollution,
and they are aligned across SwiftQueue and its baselines (§6). We first pre-train SwiftQueue
and the baselines on the first 5 minutes of the traces. We then test them on the next 5
minutes of the trace. At every 5 minute intervals, we fine-tune the models on the preceding 1
minute of the trace, and then again test on the next 5 minutes till the end of the trace.

6 Evaluation

The key takeaways from our evaluation are

SwiftQueue predicts sharp changes in latency more accurately than other machine-learning
baselines by 45-65% across a variety of real network and simulated traces.
SwiftQueue achieves lower P99 tail latency on L4S flows from a given sender by 36-45%
compared to the default L4S queue selection logic as well as queue selected by other
latency predictors.
SwiftQueue allows frequent fine-tuning to keep the model up to date over changing
network conditions and makes latency prediction fast enough at a line speed of 200Mbps.

Baselines

We choose the following baselines as they were state-of-the-art for time-series prediction
tasks prior to the introduction of Transformers.

LSTM: We use a state-of-the-art BiLSTM [81] model known used in the past for
its sequence prediction capabilities. For fairness, we align the LSTM model to have
comparable size (parameter count) as SwiftQueue (albeit having much higher inference
and fine-tuning times).
XGBoost: We use a state-of-the-art classical ML regression model XGBoost(XGB) [12],
which has been been used in the past for certain sequence prediction tasks using sliding
windows of input sequences [13].
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Figure 7 SwiftQueue achieves better prediction on sharp changes by 45-65% and has higher
tail-latency (P99) reduction for L4S flows by 36-45%, compared to other predictor-driven queue
selection or L4S’s default strategy.

Evaluation Metrics

We evaluate the prediction of SwiftQueue and the baselines on the packets where there
is a sharp change in latency. We define a sharp change as a change in latency between
two consecutive packets of at least 20 milliseconds and a relative change of at least 20% as
introduced in §4.1. We use precision, recall and F1-score to measure prediction quality at
these latency changes. We define success if both the true latency and the model’s predicted
latency have a sharp change in the same direction. We report the prediction quality only
over the packets that have these sharp changes in latency. For the tail-latency improvement,
we measure the % reduction in P99 queuing latency. We refer to this metric from now on as
P99 Reduction.

6.1 Evaluating SwiftQueue’s predictions and L4S queue selection on
real network traces

Real-world traces collection

We capture Netflix traffic (video streaming application) on a Home-WiFi network and on
a wired Ethernet network. We also collect Facebook browsing traffic (social media web
traffic application) on the same Home-WiFi network and Ethernet network. All of the flows
captured are from within the same browsing session and we define a flow as the standard 5
tuple. We use self-collected ISP traces as popular public traces like CAIDA [9] or M-LAB [62]
may not have all the features required for us. All traffic is collected on the same end-point
device and the available bandwidths on the WiFi and Ethernet links were measured to vary
between 50-100 Mbps. Table 1 shows the details of the collected traces.
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Figure 8 L4S queue selection topology in NS-3 with both L4S and Classic flows.

L4S queue selection

We use trace-driven simulation in NS-3 to evaluate the performance of SwiftQueue’s L4S
queue selection. We use statistics such as trace duration, inter-packet gaps, packet sizes etc.
from the real traces in Table 1.

We use an L4S implementation in NS3 with a dual-queue setup as specified by the authors
in [78]. We setup a L4S enabled topology as shown in Figure 8. We have a 6 L4S flows along
with 4 Classic TCP Cubic flows bound from Sender 1(S1) to destination Receiver 1(R1) .
We have 10 L4S flows from different senders creating cross traffic (unseen by SwiftQueue at
S1). All L4S flows share the same bottleneck L4S queue on the router.

By default, all packets from all L4S flows will be put on the L4S queue on Router (Default
L4S). We use SwiftQueue’s predictor to predict the latency of next packets at S1 and change
the ECN marking for the packets with high latency. These L4S flow packets from sender
S1 are put on the classic queue. As there is a large number of L4S flows, they experience
increased queuing latency on the L4S queue. We focus on reducing the tail latency for the
L4S flows sent out by Sender S1. We reduce the tail latency of packets for the L4S flows
bound for R1 by proactively changing the queue selection to reduce the queuing latency.

For measuring the improvement of packet-level queue selection, we report the P90 and
P99 latency for the L4S flows. We compare with the default L4S selection (and not other
AQM techniques) as we don’t change the L4S logic within the router. We only change the
selection logic at the sender and do not adapt the congestion control end-point to modify its
sending rate.

Result #1 - SwiftQueue can predict sharp latency changes better compared
to the baselines Figure 7 (a) shows the performance of the SwiftQueue relative to the
LSTM and XGB baselines in predicting the sharp end-to-end-latency changes for the next
packet. SwiftQueue predicts the sharp changes in latency much better than the LSTM and
XGB baselines, consistently being 45-65% higher values times better for all the real-world
traces collected, in terms of both precision and recall.

Result #2 - SwiftQueue’s prediction driven L4S queue selection achieves lower
tail latency than the baselines Figure 7 (b) shows the improved tail-latency reduction of
the L4S flows by SwiftQueue’s prediction based queue selection. SwiftQueue’s queue selection
achieves 36-45% P99 Reduction over the LSTM baseline and the default L4S selection.
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Figure 9 Impact of the bottleneck queue size on prediction accuracy and tail latency reduction.
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Figure 10 Impact of the number of flows on prediction accuracy and tail latency reduction.

6.2 Evaluating SwiftQueue’s predictions on NS-3 simulated data
Evaluation Setup

To further evaluate the performance of SwiftQueue’s predictions on packet-level interactions,
we use NS-3 [76] to simulate workloads for training and evaluating on varying network
conditions. We reuse the three-node topology (one sender, router and receiver) as shown in
Figure 8 for our experiments. We only use TCP flows for our evaluation as we need a reliable,
connection-oriented protocol. While the topology is simple, we create complex packet and
flow interactions.

The TCP flows are created using messages sampled from real world distributions [64]. We
use the web search workload for DCTCP [2] and the Hadoop cluster workload at Facebook [77].
Our default environment runs 10 concurrent TCP flows using DCTCP+L4S and 4 additional
classic TCPCubic flows (for cross traffic). This is a realistic setup, as in practice L4S flows do
not usually exist without other Classic flows on the network. We use a default propagation
delay of 20ms and a link bandwidth of 100Mbps, reflecting a typical ISP connection. Each
flow is started with a base sending rate 5Mbps. We use a default queue length of 2×BDP.
To ensure we have enough packet interactions, flows are started in a flow start window,
according to a uniform random distribution. This ensures the flows start at different times
leading to greater interaction between flow start times.

We perform a sensitivity analysis to measure the performance of SwiftQueue in terms
of prediction quality and P99 latency reduction for the L4S flows. We evaluate along the
following dimensions. We change one dimension at a time, keeping all others the same as
our default environment.
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Figure 11 Impact of the end-to-end propagation delay on prediction accuracy and tail latency
reduction.
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Figure 12 SwiftQueue’s latency prediction accuracy under different congestion control logics.

Queue size: We increase the queue size on the bottleneck router as 2, 5, 10, 15, and 20
× the BDP respectively.
# of concurrent flows: We increase the number of TCP flows using DCTCP+L4S as
10, 50, 100, 200, 500 and 1000.
Propagation delay: We increase the propagation delay of the link as 20, 40, 100, 150
and 200.
CC algorithm: We change our 10 concurrent TCP flows to run DCTPC+L4S, TCPCubic
and TCPBBR. We choose them as they represent loss-based [32] and delay-based [10]
CC algorithms that are deployed today.
We compare SwiftQueue’s performance against the baselines on 5 minutes of simulated
traffic. We don’t use the XGB model to perform packet level queue selection as the
prediction quality on the sharp changes is extremely low.

Result - SwiftQueue achieves better predictions changing new network conditions
and obtains lower P99 latency on the L4S flows

We compare the prediction quality of SwiftQueue with that of the baselines over all the
individual environments. We use F1-score on the sharp changes as a measure of the
prediction quality. We use the % decrease in P99 latency on the L4S flows, relative to the
default setting of queue selection at the flow level in order to compare the performance of
SwiftQueue’s queue selection controller.
First, in Figure 9, we measure the effect of changing the max queue. SwiftQueue
performs better than both the baselines in terms of higher F1-score by 29-62% across
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all the environments and also achieves a greater P99 Reduction by 33-35% across all
environments. SwiftQueue is not sensitive to increasing queue size for a given number
of concurrent flows and can continue to perform well for both prediction quality and
latency reduction. With a given number of flows, changing queue size doesn’t increase
the complexity of packet interactions over time due to fewer, new flow starts.
Second, in Figure 10, we measure the effect of changing the number of concurrent flows on
the performance of SwiftQueue. SwiftQueue performs better than both the baselines in
terms of higher F1-score of 29-60% across all the environments. SwiftQueue also achieves
a greater P99 Reduction by 10-35% across all environments. We expect the performance
of SwiftQueue to be slightly sensitive, with increasing number of flows as interactions
can get extremely complex. However, even upto 100s of concurrent flows, SwiftQueue
provides useful latency prediction and P99 latency reduction.
Third, in Figure 11, we measure the effect of changing the link’s propagation delay on the
performance of SwiftQueue. SwiftQueue performs better than both the baselines in terms
of higher F1-score by 29-65% across all the environments and achieves a greater P99
Reduction by across all environments. SwiftQueue is sensitive to increasing propagation
delay on the link beyond a point for a given number of concurrent flows. With increasing
propagation delays, the ACKs received at the sender are often delayed and in such cases,
SwiftQueue may not have enough past context to predict accurately or perform queue
selection. However, even at high propagation delays of 200 ms, SwiftQueue still has
observable gains and does not drop quality or increase latency.
Finally, in Figure 12, we measure the effect of only using a single TCP CC algorithm. We
see that across several popular TCP CC algorithms, SwiftQueue has better performance
in terms of prediction F1-score by 25-49%. We observed that TCP BBR flows have
slightly more random interactions and the prediction F1-score is slightly lower (about
4-5%). We feel this happens due to the probing nature of TCPBBR, which sends out
special probing packets. SwiftQueue currently cannot distinguish between such control
packets explicitly and we understand this might be a potential reason for the reduced
quality. Finally, we don’t evaluate the P99 latency reduction for TCPCubic and TCPBBR
as they cannot be configured to enable packet-level queue selection using ECN markings

SwiftQueue makes many correct predictions for sharp latency changes when flows compete
for the available bandwidth after they starts. We acknowledge that some latency changes are
fundamentally unpredictable (e.g., start of a random flow) and SwiftQueue can not predict
those. Instead, SwiftQueue focuses on learning interactions between competing flows on a
shared link.

6.3 Component-wise analysis

Benefit of changing the loss function

We measure the effect of changing the loss function from the standard MSE to our change-
point based loss function to focus on sharp changes (introduced in 4.2). While the MSE is
more optimal for learning values over the entire trend, it achieves a lower F1-score at actually
predicting the sharp changes in latency. In Figure 13 we see that SwiftQueue achieves a
higher F1-score at predicting these values across all of the real trace datasets by 17-25%.
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Figure 13 Compared with the standard loss function of MSE, training the Transformer with our
custom loss function (§4.1.1) yields much higher prediction accuracy of sharp latency changes.

0 20 40 60 80 100 120 140
Packet Count

Predictions After Fine-Tuning

100

200

La
te

nc
y 

(m
s)

SwiftQueue LSTM Actual Latency

Figure 14 Visualizing the prediction of SwiftQueue (with fine-tuning) on an example of 150
consecutive packets from the video_wifi trace, compared with their actual latency values and the
prediction of the most competitive baseline (LSTM).

Performance gains obtained from fine-tuning

Fine-tuning significantly helps improve the performance on SwiftQueue. On real network
traces, SwiftQueue doesn’t perform well without continuous fine-tuning. We observe this
in Figure 14 where after fine-tuning, SwiftQueue can capture both the sharp changes in
latency and also predict latency values which are closer to the true_value. We fine-tune the
linear layers of SwiftQueue (and the LSTM). To measure the prediction quality, we measure
the F1-score (combining precision and recall) on the predicted values of the sharp latency
changes. SwiftQueue is consistently better by 45-65% times as compared to both baselines
as seen in Figure 15 in terms of prediction quality. SwiftQueue is also significantly faster to
fine-tune, as compared to the LSTM on the same single TITAN RTX 3080 GPU by 3.8-4.4×.
While fine-tuning the XGB model on the CPU is faster, the prediction quality is too low to
be useful packet-level queue selection model.

Effect of choosing the fine-tuning interval

Choosing the right fine-tuning interval is important for SwiftQueue to obtain the best
prediction quality. While our fine-tuning speed for SwiftQueue is fast, updating the model
very frequently (e.g. every 10s of seconds) is computationally expensive (as we still use
one GPU) and maybe unnecessary. In Figure 16, we measure the effect of the fine-tuning
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Figure 15 SwiftQueue’s prediction is more accurate (F1 score) than the baselines with a fine-
tuning delay below 30 seconds. (LSTM and SwiftQueue use the same hardware.)
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Figure 16 Latency reduction and prediction F1-score (precision + recall) generally drops with
increasing fine-tuning interval, with the choice of fine-tuning interval of 5 minutes still achieving
close-to-optimal latency reduction.

interval on the prediction accuracy. We see that fine-tuning at intervals of upto 5 minutes
has negligible drop in prediction quality for our traces. Hence we don’t need to use the GPU
resource to fine-tune at a very short intervals if the gains are marginal.

Batch size vs prediction quality

We make SwiftQueue’s inference fast enough by predicting the next batch of latency values in
order to make the decision in time before the next packet is sent out. We do not want to wait
till we receive the previous latency as it might be too late. Increasing the prediction batch
size makes it possible to predict the latency value a few packets earlier. However increasing
the batch size comes at the cost of potentially reduced prediction quality. In Figure 17 we
measure the prediction F1-score across increasing batch sizes and see that increasing the
batch size excessively leads to a drop in prediction quality. Across our workloads a batch size
of 8, allows for fast inference for ISP link speeds with a marginal drop in prediction quality.

7 Discussion and Limitations

SwiftQueue for applications beyond L4S queue selection Currently L4S is chosen as
an application as its static flow-level queue assignment architecture can significantly benefit
from a latency prediction model like SwiftQueue, in order to meet its low-latency targets. In
addition, SwiftQueue currently performs queue selection but does not modify the sender’s
TCP CC algorithm (L4S currently is limited to work with DCTCP/TCP Prague only).

We hope to inspire more research to optimize latency prediction and CC jointly. We see
the potential to use the predictor to develop new proactive CC algorithms, which adapt to
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Figure 17 Prediction F1-score (precision + recall) drops with increasing batch size (more parallel
prediction), with batch of 8 achieving a favorable tradeoff between parallel prediction and prediction
accuracy.

real-time network conditions beyond rule-based algorithms. We also envision future research
with SwiftQueue to extend to more applications like video-streaming, which can benefit from
real-time network latency predictions for smoother use Quality-of-Experience.

Excessively delayed ACKs, high traffic volume If preceding ACKs are excessively
delayed (e.g., due to a high network propagation delay), SwiftQueue cannot predict the next
latency values accurately as it will not have enough past latency values to do so. If such
a situation is detected (e.g., using timeout windows), one solution for SwiftQueue might
be to fall back to default L4S queue selection. Similarly, if the number of concurrent flows
significantly scales up (e.g., beyond 10000s), the current SwiftQueue Transformer architecture
may also need to be scaled up to handle more complex inter-packet interactions.

GPU hardware requirement and costs SwiftQueue currently needs a GPU, albeit a
cheap one (§5), for low inference speed and may need a higher-end GPU to make in-time
prediction for ultra-high bandwidth (e.g., 10s of Gbps links). Running inference on GPUs
does have additional costs and more research is needed to make SwiftQueue go beyond L4S
applications at consumer-degree ISPs, which has been the focus of this paper.

One method we envision for reducing GPU costs is integration with recent outcomes
on network FPGA and hardware research which allows running ML models and making
predictions at line-rate on low cost hardware [85, 102]. We leave the integration of SwiftQueue
with hardware beyond GPUs for future work.

Overall, while SwiftQueue, as a first step, may not provide packet-level prediction and
queue selection capabilities universally across all networks, it opens up new avenues of
research for better Transformer-based packet-level analysis and optimizing more applications
to benefit from it.

8 Conclusion

We present SwiftQueue, which uses a Transformer for packet-level latency prediction and
performs L4S-based packet-level queue selection to mitigate high tail latency. Using real
traces and simulated ones, we show that SwiftQueue outperforms all baselines at predicting
sharp latency changes, and driven by the accurate latency prediction, SwiftQueue achieves
greater tail latency reduction for L4S flows.
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