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Abstract
Spatial applications, i.e., applications that tie digital information with the physical world, have

improved many of our daily activities, such as navigation and ride-sharing. This class of applications
also holds significant promise of enabling new industries such as augmented reality and robotics.
The development of these applications is enabled by a system that can resolve real-world locations
to names, or a spatial naming system. Today, mapping platforms provided by organizations like
Google and Apple serve as spatial naming systems. These maps are centralized and primarily
cover outdoor spaces. We envision that future spatial applications, such as persistent world-scale
augmented reality, would require detailed and precise spatial data across indoor and outdoor spaces.
The scale of cartography efforts required to survey indoor spaces and their privacy needs inhibit
existing centralized maps from incorporating such spaces into their platform.

In this paper, we present the design and implementation of OpenFLAME1, a federated spatial
naming system, or in other words, a federated mapping infrastructure. OpenFLAME enables inde-
pendent parties to manage and serve their own maps of physical regions. This unlocks scalability of
map management, isolation, and privacy of maps. The discovery system that identifies maps hosted
at a given location is a primary component of OpenFLAME . We implement OpenFLAME on top of
the existing Domain Name System (DNS), which enables us to leverage its existing infrastructure.
We implement map services such as address-to-location mapping, routing, and localization on top
of our federated mapping infrastructure.
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1 Introduction

Spatial applications, i.e. applications that utilize spatial data and tie digital information
to the physical world, have revolutionized many industries such as navigation, ride-sharing,
product delivery, and transportation. They hold the promise of enabling emerging industries
such as world-scale augmented reality and autonomous robots. While the vision of spatial
applications is promising, the reality is that such applications are hard to build today because
they lack an underlying infrastructure to discover and reference spatial content.

A well-designed naming infrastructure—a system for identifying and discovering entities
in the system—would enable spatial applications to easily reference relevant content. The
DNS, for example, was a key enabler of the Web and the Internet at large. It provided
a simple mechanism for converting human-readable names (domain names) to server IP
addresses. Similarly, we believe spatial applications need a spatial naming system to relate
human-readable names (e.g., Louvre Museum) with real-world locations (e.g., 48°N and
2.3°E) and the content associated with those locations (e.g., museum collections). Since this
naming system translates names to physical locations, we use the term map to refer to it.

The structure of a naming system plays a critical role in shaping and limiting the func-
tionality of any distributed system built upon it. For example, the way a naming system
handles the addition of new entities can introduce bottlenecks that hinder scalability and
maintenance. The expansion of the Web and the broader Internet in their early days was
partly due to the federated and pseudo-decentralized nature of the DNS, which enabled
organizations to independently manage their participation on the network. This relation-
ship between naming systems and application constraints also applies to spatial applications.
For example, the centralized and single-owner nature of today’s spatial naming systems or
digital maps, such as Google and Apple maps, limits their functionality.

An example of the limitations that centralized maps face is that only information gathered
and exposed by organizations maintaining them is available to applications. Extending spa-
tial applications indoors is a use case that highlights the importance of a federated mapping
infrastructure. Indoor maps contain sensitive information that needs to be owned and con-
trolled by the owner of the physical space. For example, many organizations would benefit
from providing accurate indoor map of their private offices and integrating it with outdoor
maps for applications such as office navigation for their employees, but may not be willing to
publicly host detailed maps. In addition, the effort required for the storage and cartography
of indoor spaces far exceeds that of outdoor maps [7] and surveying this space will likely be
impractical for any single centralized organization. While crowd-sourcing into centralized
maps is a possible solution, many organizations would not cede control of their maps to
centralized organizations.

In this paper, we describe the design and implementation of OpenFLAME , a federated
mapping system. The fundamental units of OpenFLAME are map servers—independent
systems deployed by potentially disparate parties that provide map data and services con-
fined to a physical region. Some map servers may correspond to existing large-scale providers
such as Google Maps, while others may be independently operated to serve indoor or private
regions controlled by individual organizations. Importantly, our system does not attempt
to replace large-scale centralized map providers but rather aims to allow smaller independ-
ent map providers to interoperate with them, encouraging larger coverage. OpenFLAME
provides the means to efficiently discover map servers relevant for a region and combine in-
formation from these servers to support services like name-to-location translation, routing,
and localization that are essential to spatial applications. Our contributions are:
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Figure 1 Centralized map architecture.

We present the first design of a federated mapping infrastructure. Our infrastructure
can support heterogeneous maps, has a low barrier to entry, ensures map privacy, and
enables fine-grained access control (§ 3).
We present a DNS-based implementation of the federated mapping system (§ 4). The
advantage of leveraging the DNS is that we have access to its existing deployment and
caching mechanisms. We describe how we convert location-based queries to DNS lookups.
We also show how arbitrary regions representing map boundaries can be registered on
the existing DNS as name records.
We implement location-based services on top of our mapping infrastructure (§ 5). Spe-
cifically, we describe our implementations for address-to-location mapping (§ 5.2), routing
(§ 5.3), and localization (§ 5.4).

We evaluate the discovery system and map services and compare them to centralized
services in § 7.2

2 Example application

To better understand the needs of future spatial applications, we start by describing what
we consider a typical such application, campus navigation. While we use this application to
describe and motivate our design, our goal is to support all future spatial applications.

Let us consider a scenario where a user wishes to get pedestrian navigation guidance from
their location in a typical city neighborhood to a specific professor’s office at a nearby uni-
versity campus. Today, such an application would rely on a centralized mapping platform
such as Google Maps to search and locate the destination. It would also use a combina-
tion of technologies to determine the location of a user, including GPS, image data from
Google Street View, and WiFi/Cellular signal strength. Figure 1 shows the architecture
of a centralized mapping infrastructure. It includes a centrally maintained map database
which is preprocessed into different forms to enable location-based services. For example,
it is processed into a graph so the routing service can run shortest path algorithms on it.
Each service uses the preprocessed data to serve application requests. Such a centralized
map would likely only have public landmarks and outdoor walkways. The professor’s office,

2 We demo some tools built for OpenFLAME on https://www.open-flame.com/.

NINeS 2026

https://www.open-flame.com/


20:4 OpenFLAME : A Federated Spatial Naming Infrastructure

Localization

Discovery

Client

Map

Tile server

Routing

Geocode

Map Server 1
Localization

Routing

Geocode

Tile rendering

Federated Spatial Discovery

Map Server 2

Map Server 3Map service
Map

Location List of map servers
Map servers are registered 

on the discovery system

Figure 2 OpenFLAME architecture.

or the university hallways that lead to the office might not be part of the map unless the
centralized service had surveyed the university.

Ideally, we would like the application to provide precise visual guidance along all steps
of the path. Unfortunately, existing applications fail to meet this objective in multiple ways
– failing to provide precise guidance when localization is inaccurate, or in this case, failing
to provide complete guidance as the required destination is not in the map database.

3 Design

Figure 2 shows the simplified architecture of OpenFLAME . Maps of different regions are
stored on separate map servers maintained by independent organizations. Map servers
also provide location-based services on top of the maps that they store. An OpenFLAME
client discovers potentially zero or more map servers covering the region of interest using a
federated spatial database. It then contacts these discovered servers to obtain services such
as routing and localization, combining results from multiple maps when needed. Alternative
design choices where the discovery system discovers spatial content or applications associated
with a location are discussed in Appendix A. In this section, we discuss our design decisions
pertaining to the organization of map data (§ 3.1), discovery query model (§ 3.2), and
security and privacy models (§ 3.3). We will describe the implementation of these models
in the next section (§ 4).

3.1 Data Model

3.1.1 Abstractions: Maps and Map Servers
Map server. A map server is a system that stores the map of a region and provides map
services on it. For example, a university building’s map server would store all the offices and
navigable hallways in the building and might provide an image-based localization service to
support AR applications. A map server can impose fine-grained security and privacy policies
on users and applications.

Map. A Map is a representation encoding relationships and attributes of spatial entities
in a geographic region. While traditionally, a map refers to the visual representation of
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geographic features, in our context it is the data that underlies such visual representations.
We do not restrict the format in which map data is stored in individual map servers.

Map services. Location-based services built on top of maps are called map services.
The green boxes in Figure 2 show some examples of map services. The tile service, for
example, returns a visual representation of the map. Clients access map data only through
map services.

Map zone. A set of map servers are grouped to form a map zone for organizational con-
venience and ease of delegation. For example, the map servers of the different departments
of a university form the map zone for the university.

Each map server is registered under a zone. Both map zones and servers define their own
coverage—the spatial extent they are responsible for. The coverage of a map server must
lie entirely within the coverage of its zone. However, the coverage of a zone may extend
beyond the combined coverage of its servers, meaning that zones can include empty regions
that are not served by any map server. A zone can delegate the responsibility of parts of its
coverage down to sub-zones. A zone can be registered with one or more parent zones.

For example, consider a university setting up its map on OpenFLAME . The university
first defines the coverage of its zone, which spans all buildings on its campus. This allows
the university to manage its zone independently of other map zones. It registers its zone
with a parent zone, e.g., the city zone. Initially, much of the university zones coverage may
consist of empty regions not served by any map server. Over time, individual university
departments can populate the zone by registering their own servers, each covering their
respective areas. Within the zone, these map servers operate independently of one another
and their coverages can overlap with each other. The university facilities department, for
example, could set up its own sub-zone and maintain all of its maps (e.g., electricity and
plumbing plans) within this sub-zone.

The fundamental unit of discovery for spatial applications is the map server. Map zones
exist primarily for organizational and administrative convenience of delegation. Applications
do not need to interact with zones directly. However, zones can serve as an optional filtering
mechanism; i.e., applications may restrict discovery to specific zones if they wish.

3.1.2 Organization of Map Servers and Zones
Map zones form a nested inclusion hierarchy; a child zone must be completely contained
within its parent zone. The coverage of map zones can overlap with each other. Map servers

NINeS 2026



20:6 OpenFLAME : A Federated Spatial Naming Infrastructure

are the leaves of this hierarchy. They always have a parent zone, and their coverages may
also overlap.

An obvious starting point for organizing the hierarchy of map zones would be to reuse
existing geopolitical hierarchies such as countries, states, and cities [21]. However, such
traditional hierarchies are not suited for our purpose. First, they are fraught with disputes.
National boundaries are contested, and even property lines are frequent sources of legal
conflict. Anchoring a technical system to these boundaries risks inheriting political disagree-
ments [11]. Second, geopolitical hierarchies generally assume exclusive ownership, where a
region belongs to exactly one parent. This prevents benign overlaps, such as a university
and a commercial provider both maintaining maps of the same campus.

The key difference between our approach and traditional hierarchies is the explicit allow-
ance of overlaps. Multiple zones may cover the same physical region, and each can delegate
to its own set of servers. This flexibility enables incremental deployment, where new maps
can be attached under existing zones without requiring reorganization. Figure 3 shows an
example map zone hierarchy with map servers within zones.

While overlaps enable easier integration of new maps, they also introduce challenges for
map server discovery. A discovery query must now search across multiple branches of the
hierarchy, increasing the complexity of discovery. We elaborate on this and discuss a feasible
implementation in § 4.

Why hierarchy?

Instead of organizing as a hierarchy, every map server could register its coverage with a
centralized service that allows overlaps. This service could leverage existing spatial data-
bases [36, 43] to store the coverage of each map server simplifying the discovery process.
However, this undermines the goals of federation, since new map registrations and updates
to coverage would be controlled by a single entity. A peer-to-peer design would avoid cent-
ralization but struggle to scale for complex discovery queries. A hierarchical system provides
structure, supports federation through delegation, and scales more naturally with growth.

3.1.3 Expressing Coverage

Polygons are the most intuitive representation to express the coverage of map servers and
zones, but operations such as intersection checks require complex spatial indexes that are
costly to build and query in distributed settings. Furthermore, polygon-based queries are not
amenable to distributed caching as they rely on exact spatial boundaries. Small differences in
query boundaries can cause cache misses, reducing cache reuse and increasing recomputation.

We can instead express coverage as a collection of primitive shapes. Existing spatial
indexing systems like H3 [48] and S2 [24] represent regions using primitive shapes. H3 and
S2 decompose the world into hierarchically organized hexagons and squares respectively. The
advantage of using spatial indexing systems is that discovery operations can be performed
directly on the indices of primitive shapes. Moreover, queries for the same region can be
cached using these indices as keys. Precisely expressing an arbitrary region might require
a large number of primitive shapes. However, in practice, map coverage boundaries are
rarely exact. While it is practical to guarantee that the coverage lies within a boundary,
it is often difficult to assert that coverage of a zone or server extends up to every point
of that boundary. We can exploit fuzzy boundaries in the real-world to represent regions
approximately and bound the number of primitive shapes required to cover them.
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Figure 4 S2 cell covering for a given map boundary.

Unlike squares, hexagons do not exactly subdivide into child hexagons. As a result, the
inclusion of children in parents is only approximate in H3, making S2 more suitable for
representing an inclusion hierarchy of map zones. Therefore, we use the S2 spatial indexing
system to express coverage as a collection of S2 cells, together with an optional altitude
above sea-level. Figure 4 shows an example of S2 cells representing a map zone.

3.2 Discovery Query Model

A map server discovery query takes as input a list of S2 cells and optionally, altitude and
a list of accepted map zones. It returns the set of map server addresses whose coverage
intersects with the input S2 cells. Discovery is limited to a specific altitude, if provided. It
is also restricted to map servers registered within the accepted map zones list, if provided.

discover(S2 Cells, [altitude], [accepted map zones]) →
[map server1, map server2, · · · ]

(1)

For convenience, an application can represent the search region as a 3D bounding volume,
i.e., an arbitrary 2D geographic shape (e.g., a polygon or circle) together with an altitude
range. The OpenFLAME client library invoked by the application converts the bounding
volume to a collection of S2 cells and altitude.

An application that already knows map zones relevant to its context can restrict the
discovery process to those zones. For example, a university navigation application can
restrict discovery to the university zone. If no list is provided, the discovery query is answered
by first recognizing the set of map zones that cover a region followed by identifying all the
map servers within these zones that cover the queried region. A consequence of allowing
overlaps of map zones is that discovery queries now have to explore all branches of the
map zone hierarchy that have coverage over the queried bounding region. Figure 3 shows
an example where a query within a university returns maps across zones such as the city
waterworks zone, university’s own zone, and Google Maps. An advantage of using S2 cells
is that the query results can be cached across multiple layers such as client devices, Content
Distribution Networks (CDNs), and Internet Service Providers (ISPs). We show in our
evaluation (§ 7) that, despite its complexity, the discovery query is manageable due to
caching.

NINeS 2026
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Limitations.

The discovery query model we adopt is inherently limited. It does not accept custom search
terms and therefore cannot support nuanced queries such as “find only maps of shopping
complexes in a city”. Importantly, it does not support a ranking criteria to order the discov-
ery results. As a result, querying over a region with many overlapping areas may yield large,
unordered result sets. We envision that, once deployed, discovery of maps will evolve much
like the Web. While the maintenance and updating of maps must be federated, much like
websites on the Web are maintained independently, the discovery of maps can be centralized,
analogous to a Web search engine. Centralized search engines would act as curators that
crawl regions for available maps, index metadata and the services provided by map servers,
and support richer search capabilities. Additionally, mechanisms such as external whitelists,
blacklists, and ranking systems (e.g., crowd-sourced voting, auctions) can be employed to
further tune discovery results. The discovery mechanism implementation described later in
this paper (§ 4) would still be essential to allow such out-of-band mechanisms to discover
maps in the first place. We leave the study of nuanced map searches, filtering, and ranking
mechanisms to future work.

3.3 Security model

3.3.1 Threat model
Once federated mapping is deployed at scale, it will likely reveal a wide and diverse attack
surface. Map servers, for example, are vulnerable to attacks such as denial of service (DoS),
reflection, and amplification. We believe that existing methods on DoS protection or anom-
aly detection could mitigate such attacks. In this work, we choose to focus on a subset of
threats unique to OpenFLAME that stem from identity spoofing. Identity spoofing in this
context refers to an adversary masquerading as a legitimate map server or zone, tricking
applications into trusting falsified associations between regions and services. This would
lead to threats such as cache poisoning and man-in-the-middle attacks. Identity spoofing
may also result in denial of service for spatial applications as they could be bombarded with
fake discovery results. As our model relies heavily on caching, and cached records may not
always originate from the authoritative source, ensuring the authenticity of the discovery
results is crucial.

3.3.2 Chain-of-trust model for spaces
Several existing models provide inspiration for how such identity authentication can be
accomplished. For example, the Web relies on Public Key Infrastructure (PKI) [12], where
trust anchors are global Certificate Authorities (CAs) that issue digital certificates binding
identities to public keys. In contrast, DNSSEC [2] and BGPSEC [32] use hierarchical chain-
of-trust systems, where authority is delegated step by step (e.g., root to top-level domain to
child domain), and each link in the chain validates the next.

We adopt a hierarchical chain-of-trust model for OpenFLAME in which each zone signs
all map servers and child zones registered with it. Clients performing discovery have con-
figured trust anchors and validate results by ensuring that the signature chain extends to
those anchors. We argue that this model is suitable for spaces as it is easier for new par-
ticipants to prove their authenticity to a parent zone than to undergo validation from an
external CA. For example, it is easier for a student club wanting to host a map of the uni-
versity to request for validation from the university admins than from a centralized CA. Our
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data model is inherently hierarchical, making it natural for a parent zone that references a
child to also provide a signed attestation of that childs validity.

Limitations.

Hierarchical chain-of-trust is inherently easier to compromise than a tightly controlled cent-
ralized PKI, as careless or malicious child zones may issue faulty signatures compromising
the rest of the chain below them. As described in § 3.2, we expect future spatial applications
to rely on external curators, filter lists, and ranking mechanisms to select maps in a region.
The security mechanism here serves to establish a baseline for identity.

3.3.3 Communication with Map Servers
Once map servers are discovered, clients can authenticate with them using standard mech-
anisms like password-based login or OAuth [27] with OpenID [45]. As map servers are
discovered dynamically, it becomes increasingly important for the client to authenticate the
server’s identity (e.g., through X.509 certificates [12] or DNSSEC [2]). Subsequent commu-
nication between clients and servers to obtain map services can leverage whatever security
protocols are most appropriate for the application context. For instance, an image-based
localization service might incorporate privacy-preserving features to preserve confidentiality
of both the server and the client device [47, 37, 46].

4 Implementation on DNS

4.1 Why DNS?
Existing spatial databases, such as PostGIS [43] and MongoDB [36], can support Open-
FLAME discovery query (i.e., Query 1) off-the-shelf. They provide datatypes to represent
polygons, can index geospatial coordinates, and have fast intersection operators to answer
discovery queries. Hierarchy and delegation of zones can be implemented as a collection
of spatial databases. However, using such databases would require developing mechanisms
for federated and distributed operations, including query routing, response merging, and
response caching. We believe that it is better to begin with a design that lends itself to
distributed operation from the start.

The data model of OpenFLAME map servers and zones described in § 3 is analogous to
the DNS model in several ways. First, the map zone is akin to a DNS zone representing
an autonomous zone of administration. A link to a map server from a map zone is akin
to a DNS record within a DNS zone. Second, DNS has a similar model of hierarchy and
delegation for its zones as is described for map zones. Third, the DNSSEC model follows
the chain-of-trust mechanism with pre-configured trust anchors similar to the security model
described in § 3.3.

Beyond the data model, DNS infrastructure also aligns well with the needs of Open-
FLAME discovery. First, DNS has pervasive distributed caching across multiple layers such
as local caches, ISP resolvers and CDNs which could benefit OpenFLAME discovery queries.
Second, discovery queries are exclusively read queries and do not need a full-fledged data-
base with transaction processing. Third, map servers and zones are not expected to change
very frequently so we do not need low update latencies making DNS suitable.

While the models of OpenFLAME and DNS share many similarities, key differences make
it non-trivial to adopt DNS directly. First, DNS does not natively support location-based
queries or registrations. In § 4.2, we show how regions can be encoded as collections of

NINeS 2026
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Figure 5 Converting S2 cell index to geo-domain.

domain names compatible with DNS. Second, unlike DNS where each zone is delegated to
a single owner, OpenFLAME permits overlaps between the coverages of map zones. As a
result, discovery queries may need to traverse multiple delegation chains rather than a single
path. We introduce additional records (§ 4.3) and query mechanism (§ 4.5) to support such
overlaps.

4.2 Geo-domains
Geo-domains are the DNS-compatible addresses representing a physical region. We use the
spherical geometry library S2 [24] to generate geo-domains from a bounding region.

S2 projects the Earth’s surface onto a perfect mathematical sphere [26]. The sphere is
then decomposed into a hierarchy of cells called S2 Cells [25]. Each S2 Cell is a quadrilateral
bounded by four spherical geodesic lines—lines along the shortest path on a sphere. The
highest level in the S2 hierarchy at level 0 is called a Face. Faces divide the Earth into
six large quadrilaterals. The top-level faces are recursively subdivided at each level into 4
smaller children. Cell levels range from 0 to 30, and the smallest cells at level 30 have an
area of about 1cm2. The six top-level cells are numbered from 0 to 5. At each level, the
four child cells are numbered from 0 to 3. Each S2 cell has a 64-bit index that is essentially
a concatenation of the hierarchical cell numbers in binary form with padding to extend the
length to 64 bits. The S2 library also provides the region coverer algorithm—an API that
returns the set of S2 cells that approximately cover a given bounding region.

The process of converting an S2 cell index to a geo-domain is shown in Figure 5. The
S2 cell index encodes the full hierarchy of the cell up to the top-level face which we convert
to a DNS-compatible format. The geo-domain is organized such that the top-level face is
at the right end and the smallest cell is at the left end of the domain name. We need a
domain suffix to represent the root domain of the geo-domain. In our examples, we use
.loc. The altitude of the S2 cell, rounded up to the nearest integer in feet, is prefixed to
the geo-domain. If the altitude is unknown, the letter ‘U ’ is prefixed instead.

4.3 DNS records
We introduce three new DNS record types to represent map servers, zones, and delegation
signers. Although the structures of data in these records are same as the existing DNS
records (NS, CNAME, and DS respectively), we introduce new records to support overlaps
between zones. The owner names of all of these records are geo-domains.

MAPSERVER record holds the address of a map server. Its structure is the same as a CNAME
record on traditional DNS that holds the canonical name (or alias) of a domain name.
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nameserver: cmu-nameserver.edu. 

$origin 1.0.4.6.4.loc

3.3  IN TXT { type: MAPZONE, data: cs-ns.univ.edu }
1.1.3 IN TXT { type: MAPZONE, data: bio-ns.univ.edu }
2.2.4 IN TXT { type: MAPSERVER, data: admin-maps.univ.edu }
2.2.4 IN TXT { type: MAPSERVER, data: student-maps.net }

Figure 6 Geo-domain DNS records.

Discovery queries request MAPSERVER records associated with one or more geo-domains.
A geo-domain can have multiple MAPSERVER records associated with it to allow overlaps,
unlike CNAME records [34]. A request for a MAPSERVER record informs the resolution
system (e.g., DNS recursive resolver) that multiple delegation chains need to be followed
to answer this request.
MAPZONE acts like an NS record in DNS, i.e., it delegates authority for a sub-zone to the
appropriate name servers. Unlike NS, however, the same geo-domain may have multiple
MAPZONE records, each leading to a different delegation chain. While DNS allows multiple
NS records for the same domain, the underlying assumption is that they all lead to the
name servers maintained by the same administrative entity with the same data [34, 35].
However, for OpenFLAME discovery queries, resolvers have to follow the delegation
chains of all MAPZONE records encountered.
MAPDS functions like a DS record in DNS, which DNSSEC uses to authenticate the del-
egation from a parent zone to a child zone [3]. The key difference is that, unlike DS,
a single geo-domain can hold multiple MAPDS records, each corresponding to a different
delegation chain.

To ensure backwards compatibility with existing DNS servers, we wrap the above records
in TXT records which can hold arbitrary data and is universally supported by all DNS
implementations. As a result, map zones can be hosted on standard DNS nameservers
without any changes. Figure 6 shows an example zone file in OpenFLAME . It has MAPZONE
records pointing to name servers maintained by separate departments. It also has MAPSERVER
records pointing to map servers hosting the map of the university admin building. We
implement map servers as web servers that implement map services such as localization,
routing, and geocoding (§ 5).

4.4 Map registration workflow
To understand the map registration workflow, let us consider an example of hosting an
airport’s map on OpenFLAME ; for clarity, we omit signature and authenticated delegation
records here and defer their discussion to ğ 4.6 on security.

First, a polygon is roughly drawn around the map region. S2’s region-coverer algorithm
is used to generate S2 cells covering the polygon. In Figure 4, the blue polygon represents the
map’s boundary and each red square represents an S2 cell. The covering does not perfectly
align with the blue polygon marking the map boundary. This is acceptable since maps on
OpenFLAME have fuzzy boundaries. The altitude of the map is mentioned or it is marked
as unknown.

For each S2 cell, a geo-domain is generated as shown in Figure 5. A MAPZONE record
for each geo-domain is registered at the parent zones DNS nameserver (e.g., the nameserver
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(a) Bounding region. (b) Base S2 cells.

(c) Base geo-domains. (d) Parent geo-domains.

Figure 7 Generating geo-domains for discovery.

hosting the city map zone), enabling queries within the airport to be delegated to the
airports map zone. These MAPZONE records point to the airports DNS nameserver. If altitude
information is available, an additional set of geo-domains is registered with the altitude
marked as unknown (using the prefix ‘U). This allows the zone to remain discoverable even
for clients that lack altitude data.

Note that the airport is not required to register under a single, globally sanctioned parent
zone. Instead, it may choose any parent zone whose spatial coverage includes the airport
region. For example, if a city-level map zone declines to allow registration of the airports
map zone for any reason, the airport can register under an alternative parent zone operated
by another organization. As long as the parent zone advertises coverage over the relevant
region, the airports map remains discoverable through OpenFLAMEs discovery mechanism.

Once the airport zone is established, individual map servers can register MAPSERVER
records in the airport’s DNS server pointing to the corresponding servers providing map
services. For instance, each terminal may operate its own map server. The airport zone
may also delegate portions of its coverage to sub-zones by publishing MAPZONE records in its
nameserver.

4.5 Discovery query workflow
As described in § 3.2, an application expresses search region as a bounding volume (i.e., a
2D geographic region with altitude). The OpenFLAME client first converts the request to
a discovery query of the form (1) and then represents it as geo-domains. Figure 7 shows our
technique for converting a bounding region to geo-domains.

1. We use S2’s interior region coverer algorithm to get a set of S2 cells that cover the 2D
geographic region. We call these the base S2 cells (Figure 7b).
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Figure 8 Intersection of queried and registered geo-domains.

2. For each base S2 cell, its corresponding geo-domain is generated (Figure 7c). We call
these geo-domains the base geo-domains.

3. For each base geo-domain, we generate all the parent domains by removing sub-domains
sequentially from the left. We retain the altitude. For example, the parents of the domain
U.1.3.5.loc are U.3.5.loc, and U.5.loc (Figure 7d). Querying parents is essential to
discover maps whose coverages are larger than the queried region. Optionally, we also
add the children of base geo-domains upto a predefined level.

4. The set of geo-domains to query includes all the base geo-domains, and their parents with
duplicates removed (and optionally, their children). Optionally, a copy of the same geo-
domains but with altitude marked as unknown is also queried to discover map servers not
registered with a known altitude. Queries for MAPSERVER records of all these geo-domains
are made in parallel to get a list of map servers for the queried region.

Figure 8 illustrates a discovery query. Red S2 cells show the geo-domains registered for
a map server serving a museum, while purple S2 cells show the geo-domains generated and
queried for the input region (the small purple circle). The intersection of the registered and
queried geo-domains, shown with black stripes, ensures that the address of the map server
is returned by the DNS when the discovery query is made.

Caching.

In every discovery cycle, the OpenFLAME client typically queries about 40 geo-domains
(about 10 base geo-domains and 30 parent geo-domains. See § 7 for details). The ubiquitous
caching mechanisms in DNS make such a large number of queries feasible. Most of the geo-
domain queries are answered by the local DNS cache and never leave the device. This is
because some of the top-level parent geo-domains (Figure 7d) rarely change as the queries
from a client are usually limited to a small region in the real world.

Fan-out queries.

In traditional DNS resolution, a query, such as one for a CNAME record, proceeds by following
a delegation chain through NS records. If multiple NS records are present, the resolver
arbitrarily selects one and follows only that chain, since all entries are assumed to lead to
equivalent answers. In OpenFLAME , this assumption does not hold because overlapping
zones may create multiple valid delegation chains for the same geo-domain. To correctly
resolve a MAPSERVER record, the resolver must therefore traverse all MAPZONE records in
parallel, exploring every chain of delegation rather than selecting one. In our implementation,
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(a) Outdoor view of a building from Google
Maps.

(b) An indoor map of offices hosted on private
servers.

Figure 9 Map visualization application built on OpenFLAME .

to maintain backwards compatibility, we leave standard DNS resolvers unmodified. Instead,
the client issues TXT queries for the requested geo-domains. It then queries name servers in
each MAPZONE record (wrapped in a TXT record) to get MAPSERVER records.

4.6 Security/Validation
The security model for spaces described in § 3.3 follows a chain-of-trust approach similar to
DNSSEC. In DNSSEC, each record is signed using an RRSIG record, and these signatures
are validated against public keys stored in DNSKEY records. Delegation between zones is
authenticated using DS records, which establish trust from a parent to a child zone.

Our implementation reuses DNSSECs DNSKEY and RRSIG records as well as its standard
zone-signing protocols. The key difference lies in how delegation is handled. To support
multiple delegation chains for the same geo-domain, we introduce a new record type, MAPDS.
A geo-domain may have several MAPDS records, each corresponding to a different delegation
chain. As a result, authenticating a MAPSERVER or MAPZONE record may require traversing
all relevant delegation chains.

5 Building Map Services

In this section, we discuss examples of implementing map services on the OpenFLAME infra-
structure. We consider five key services: tile server (i.e., map visualization, § 5.1), forward
and reverse geocode(§ 5.2), routing (§ 5.3), and localization (§ 5.4). While OpenFLAME
can support arbitrary services, we highlight these five because they span the spectrum of
inter-map interactions: tile server and reverse geocoding (location-to-address mapping) do
not require interaction with other maps, forward geocoding (address-to-location search) re-
lies on a root map to bootstrap the search, and routing and localization require combining
results across multiple maps. See Appendix C for a discussion on combining these services
across maps that use different coordinate systems.

5.1 Tile Server
The tile service serves the application with a visual representation of its map data. The
tile service on our map servers serves 3D scans of indoors as meshes, along with a graph
representing map data. We build an interactive map application that uses OpenFLAME
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Source

Destination

Figure 10 Geo-domains queried for routing

to discover map servers hosted in the user’s view region, downloads tiles from them, and
renders these 3D tiles alongside others for the same region. Figure 9 shows two screenshots
from our application. Google Maps is registered as a server with global coverage and its 3D
map tiles service [23] provides outdoor 3D scans of buildings (Figure 9a). Figure 9b shows
indoor scans of offices within the building served by private university map servers that are
exposed by reducing Google tiles opacity. These tiles are only visible to users with university
credentials.

5.2 Forward and Reverse Geocode
The process of converting a text-based address to a location on the map is called forward
geocoding [22]. In a centralized map provider, the text-based addresses of map nodes are
indexed against their geolocations. So geocode involves querying this indexed database. In
OpenFLAME , we need a root map with global coverage to bootstrap the geocoding process.
In our case, large world-map providers such as OpenStreetMap, Google or Apple maps
serve as root maps. Given a text string of a hierarchical address, the client first uses the
geocode service of a root map to get the coarse location of a part of the address. The
client then discovers map servers for this coarse location. It requests geocoding service from
each of these map servers which search in their maps for the exact address. For example,
let us consider the address “Mona Lisa Painting, Louvre Museum, Paris, France”. While
OpenStreetMap’s data might not contain the location of the painting in the museum, it will
give the location of the Louvre museum. OpenFLAME client can then discover the Louvre
map server and search for the location of the painting within that map server.

The service that coverts a geolocation to a map node is called reverse geocode. Given a
geographic location, the OpenFLAME client uses the discovery system to find all the map
providers in that location. Then it requests the reverse geocode service from each discovered
map server and returns to the client the node that is closest to the requested geolocation.

5.3 Routing
Routing refers to calculating a path from source to destination with optimization objectives
such as minimizing travel duration, distance, or toll price. Routing in a centralized map is
performed by running shortest path algorithms on the graph representation of the map [20, 4].
We present a simple implementation for routing on federated maps that we find is sufficient
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for most common cases. Given the source and destination addresses, we first use the geocode
service to find their approximate geolocations. We then use the discovery system to find
map providers near the source and destination. Figure 10 shows the geo-domains queried.
Querying smaller geo-domains near the source and destination locations discovers smaller
and possibly more detailed maps. The client also discovers large maps that cover the region
between the source and destination. The client uses a large map that spans both the source
and destination to get an approximate route from the source to the destination. It then
contacts smaller maps near the source and destination to refine these routes.

Let us reconsider the campus navigation application from § 2. The OpenFLAME client
would discover that Google Maps spans both the source—the street that the user is currently
in, and the destination—the university premises (even though Google Maps only has coarse
information at the destination). The client then requests an approximate route from Google
Maps that would lead the user to the university campus entrance. It then requests the
university’s map server for a route from the university entrance to the professor’s office.
The client then stitches these two routes together to obtain a complete route from the street
to the office.

This simple algorithm works for the common case where world-scale maps such Google
Maps is sufficient to navigate the user outdoors, switching to other smaller maps only when
indoors near the source or destination. However, this does not work for situations where
the optimal path passes through smaller maps. Small detailed maps along the path are
never discovered. There is a trade-off between the number of map servers contacted and
the optimality of the final route. In § 7.3, we evaluate the optimality of our simple routing
algorithm compared to a centralized algorithm. We leave the exploration of better routing
algorithms to future work.

5.4 Localization

Localization is the service that informs the application the position and orientation or the
pose of a device with respect to a map. Centralized maps are set against the system of
latitudes and longitudes so spatial applications rely on geo-positioning systems such as GPS,
WiFi, and cell towers to position the device with respect to the map. Maps in OpenFLAME
can be indoors (where GPS does not work reliably) and can be laid out in separate 2D/3D
coordinate system of their own. To ensure devices can localize themselves within such maps,
the map servers will have to provide their own localization service.

Localization can be performed using various technologies including Ultra-Wideband
(UWB) beacon, Bluetooth, Wi-Fi, and image-based methods. Image-based localization
is a well-studied problem [31, 40, 30, 39]. Our prior work [5] demonstrates image-based
6DoF localization across federated 3D maps. It uses a combination of local trajectories from
device VIO sensors and remote trajectories from VPS (Visual Positioning System) servers
to select the best map. It also shows how to stitch localization results across maps without
exposing internal map details. Here, we focus on how localization integrates with the dis-
covery layer of OpenFLAME . Figure 11 illustrates the workflow. Generating geo-domains,
making DNS queries, and sending images to all servers is costly in both computation and
network overhead. We avoid repeating this process by exploiting temporal locality. That is,
a device typically remains within the same map for a contiguous period of time. Thus, we
can repeatedly send cues to the same server (i.e., activeServer) until localization quality
degrades, at which point rediscovery is triggered. In § 7.2, we evaluate the clients ability to
switch between map servers.
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Figure 11 Localization and discovery flowchart.

6 Implementation

Client library: We implement OpenFLAME as an npm[42] library, bundling it for browsers
to support platform-agnostic web applications. Since browsers lack direct system calls for
DNS queries, we use DNS over HTTPS (DoH)[28], supported in the latest BIND9 [6] DNS
server implementation.

DNS: Our DNS server uses the BIND9 implementation. For evaluation, we run our
DNS server on a machine with Intel Core i9-9820X CPU. We also provide a web-based tool
to automate the process of generating geo-domains.3

Localization: We implement the federated image-based localization service as described
in prior work [5]. We run localization on a machine with Intel Core i9-13900K CPU and
NVIDIA GeForce RTX 4090 GPU.

Routing and geocoding: Within map servers, we use Nominatim [41] for geocoding
and Open Source Routing Machine (OSRM) [33] for routing.

Interactive map: The web application is implemented using CesiumJS [9], a JavaScript
library for creating 3D maps. Outdoor map tiles are streamed using the Google Photoreal-
istic 3D Tiles API [23]. We create indoor scans using Polycam [44] and convert them to map
tiles using Cesium Ion [8]. These indoor map tiles are served from a Django [19] web server
access-controlled using oAuth [27] and OIDC [45] to restrict tile service to specific logins.

7 Evaluation

We evaluate the DNS-based discovery system in § 7.1. We show that most of the DNS
queries in OpenFLAME are cache hits and that a standard bind9 DNS deployment can
support a large number of users despite discovery involving a large number of DNS queries.
In § 7.2, § 7.3 and § 7.4 we discuss the performance of localization, routing, and reverse
geocode on federated maps and compare them with their centralized equivalents.

7.1 Discovery
To evaluate the discovery phase, location traces with latitude, longitude, and 95% confidence
radius were collected by the authors. These traces are representative of the movement of a

3 https://www.open-flame.com/
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Figure 12 Examples of location traces collected.

typical device that may run a location-based application on OpenFLAME . Figure 12 shows
a few examples of the traces collected. The blue lines show the latitudes and longitudes and
the red circles show the 95% confidence radius. Note that the error is higher indoors than
outdoors, as expected. We then ran the discovery phase on each of these traces.

0 200 400 600
0
10
20
30
40
50

Cached Uncached

Time (s)

#
 g

eo
-d

om
ai

ns

(a) Number of geo-domains per dis-
covery query over one trace.

Total
Cached

Uncached

0

20

40

60

#
 g

eo
-d

om
ai

ns

(b) Geodomains queried
over all traces.

0 0.2 0.4 0.6 0.8 1
0
2k
4k
6k
8k
10k

Hit ratio

Fr
eq

ue
nc

y
(c) Distribution of cache
DNS hit ratios.

Figure 13 Geodomain query statistics in OpenFLAME .

Figure 13a shows the number of geo-domains queried for one of the traces. The number of
geo-domains queried is consistently high throughout the trace with a median of 36. However,
the number of uncached geo-domains that have to be queried from the DNS server is small
with a median of 4. Most of the geo-domain queries are answered by the local cache as
the device does not arbitrarily jump to radically different locations and query different geo-
domains.

Figure 13b shows the box plot of the total number of geo-domains queried across all
records in all traces. Notice that most of the DNS requests are resolved from the cache.
The long whiskers for both the cached and uncached box plots are because of the first
OpenFLAME query in the session. In the first query, all geo-domains need to be queried as
the cache is empty. Figure 13c shows that the DNS cache hit ratio is close to 1 for a large
number of OpenFLAME queries.

We used dnsperf [14] to benchmark our DNS server. The DNS requests were generated
on a machine in the same local network as the DNS server. Figure 14a shows that even
at 20,000 DNS queries per second, the server response latency stays at 4 ms. This means
that a single DNS server, without complex infrastructure set up, can support thousands of
OpenFLAME clients resolve geo-domain queries.

7.2 Localization
The localization service needs to work in tandem with the discovery phase as the user moves
through different maps. Figure 15 shows the network activity on an OpenFLAME client



S. Bharadwaj et al. 20:19

5k 10k 15k 20k
0
2
4
6
8

10 stddev
avg

queries / s
R
es

po
ns

e 
(m

s)

(a) Response latency.

5k 10k 15k 20k

30
40
50
60
70

stddev
avg

queries / s

%
 C

PU

(b) CPU Usage.

Figure 14 DNS server capacity.

running the localization service. Figure 15a shows the time that the client spends in dif-
ferent phases in one cycle of queries including discovery and localization. Each horizontal
bar represents the time from when the request was sent to when the response was received,
including the time the client spent waiting for the response. Metadata refers to the negoti-
ation of localization technologies. The client waits over 1 second for the localization result
from the map servers. Note that other localization technologies could require far less time
for the localization step of the process. In our AR application, while it waits for localization
results, we continue to render AR content using the local tracking implemented by WebXR.
We used the localization result to get an initial pose estimate and to correct drifts in local
tracking. Therefore, the waiting time does not significantly affect the user experience.

Figure 15b show the number of requests sent in each phase. About 40 geo-domains
are queried in the discovery phase as evidenced by the large number of network requests
sent in the discovery phase. Despite a large number of requests, the time spent in the
discovery phase is much shorter than in the localization phase (Figure 15a). This is because
OpenFLAME makes all DNS requests in parallel and the DNS server responds in a few tens
of milliseconds. To capture the worst case for the number of requests sent in the discovery
phase, we configure our DNS servers to prevent caching of NXDOMAIN results (i.e., negative
results). However, as we show in § 7.1, only the first request involves a large number of DNS
queries, after which most geo-domains are cached.

As described in § 5.4, OpenFLAME does not run the discovery phase repeatedly but
rather maintains an activeServer (Figure 11). To verify that OpenFLAME returns the
correct map server without having to run rediscovery every time, we set up 4 map servers,
each covering a different indoor region in a university building. The regions were close
enough that GPS location could not reliably distinguish between the 4 regions indoors. As
a result, every time rediscovery is triggered, the addresses of all 4 map servers are returned
and images are sent to all of them. The dotted lines in Figure 17 show the confidence of the
map servers normalized between 0 and 1 as a reference. OpenFLAME does not contact all
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Figure 15 Network activity of localization service.
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servers every time, and therefore does not have access to this data but rather uses local VIO
poses to estimate ‘client error’. The colored dots show the selected activeServer. We see
that in most iterations, the activeServer is the server with the highest server confidence.
The stars in the figure show that rediscovery roughly corresponds to the times when the
confidence scores for the activeServer dips. Two consecutive rediscoveries are triggered
when the confidence scores are low for all servers in a region where no map server has good
coverage.

7.3 Routing

We evaluate our implementation of the routing service (§ 5.3) on an OpenStreetMap of a
city. The routing service is run on two versions of the map—a centralized version which
retains the original form of the city map, and a sharded version where we split the map
into a root city map and smaller sub-maps. The smaller sub-maps consist of universities and
some neighborhoods cut out of the city. We generated geo-domains for these sharded regions
and registered them on our DNS server. These DNS records point to map servers providing
routing service for each shard. We use the Open Source Routing Machine (OSRM) [33] on
the map servers to calculate optimal routes within maps. A routing query in the central-
ized version is made to the map server running OSRM on the whole city’s map. In the
sharded version, routing involves discovering relevant map servers using DNS queries and
then requesting the map servers to run OSRM on their portion of the map.

Figure 16a shows the ratio of the travel distance along the path returned by sharded
and centralized routing. A ratio of 1 indicates that the distances are the same, while higher
ratios show the extent of sub-optimality of sharded routing. The median ratio is 1.12 and
the 90th percentile is 1.47. Figure 16b shows the CDF of the times taken for the completion
of routing queries on the sharded and centralized models. These times include both the
discovery and route calculation times. At the median, a sharded routing query takes about
twice as long as a centralized query.

7.4 Reverse Geocode

We evaluate our implementation of the reverse geocode service using the same setup of
centralized and sharded maps as described in § 7.3. Figure 18 shows the CDFs of the
time taken for reverse geocode queries on sharded and centralized maps. It includes both
discovery and map data query time. At median, the ratio of sharded to centralized time is
1.67.
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Figure 16 Routing performance on Sharded maps.
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Figure 17 Map Selection.
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Figure 18 Reverse Geocode perform-
ance.

8 Related work

Federated mapping.

MapCruncher [16] recognized the need to allow interoperability of distributed geographic
data, focusing on layering interactive map data (called ‘mashups’) from different sources.
MapSynthesizer [15] built an application on top of MapCruncher that could discover and
render tiles from distributed sources. They do not go into the details of how map data
from different sources can be organized and discovered as their focus is on interactive map
tiles. Our approach is to treat maps as an abstraction, and build an infrastructure to
organize and discover them so they can expose any generic service (including visualization)
to applications.

DNS-based discovery.

There have been some proposals in the past that have used the DNS for discovery of ser-
vices. DNS-based Service Discovery (DNS-SD) [10] (eg. Apple Bonjour [1]) uses the DNS
to discover services of a given type under a given domain. In these systems, discovery is not
based on geographic location but within a local network. DNS LOC records [13] store latit-
ude and longitude as part of record data. These records only serve as metadata associated
with a domain name and do not assist with location-based discovery. Several proposals have
been made to extend the DNS to support geographic location-based queries, specifically for
Vehicular Ad-hoc networks (VANETs) [29, 17, 18, 38]. However, these proposals require
altering DNS implementation and were not adopted. Recent work by Gibb et al [21] intro-
duces location-aware DNS queries by leveraging the hierarchy in civic addresses of locations.
It does not explore how to generate these domains to discover nearby services.

9 Conclusion

In this paper we present the design and implementation of OpenFLAME , a federated map-
ping system for spatial applications. OpenFLAME organizes the world into smaller maps
hosted on map servers maintained by disparate parties. It can incorporate private indoor
maps, is scalable, and has a low barrier to entry. We implement a DNS-based map server
discovery system so we can reuse existing DNS infrastructure and caching mechanisms. We
also implement location-based services, including map visualization, geocoding, routing, and
localization, on federated maps. We believe that a federated mapping system is essential
for future spatial applications and hope that our paper acts as an impetus for the research
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community to start democratizing maps.
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Content
-centric

Application
-centric

Map
-centric

Scalability 7 3 3

Incremental
deployability 7 7 3

Space ownership
Enforcement
Delegability

Depends on implementation
of the discovery system

Low barrier for
map creators
Low expectation
from clients

Depends on implementation
of location-based services

Table 1 Design choices vs. system characteristics.

A Design space exploration

A spatial naming system associates locations with names. In the paper we choose maps (i.e.,
labels associated with locations and relationships between labels) as names. However, there
are alternate choices for names that can lead to a different system design.

Content-centric design – the naming system associates locations with content hosted
at those locations. For example, at a supermarket, the naming system might discover the
products sold at the supermarket. We believe that in future spatial applications, content
will be dynamically generated at a high rate (as we see on Web applications today). Content-
centric design will be bottle-necked at the naming system which is detrimental to spatial
applications.

Application-centric design – the naming system associates locations with applications
hosted at those locations. For example, at a supermarket, the naming system might discover
the product search and navigation application. This is analogous to the Web where names
(eg. google.com) refer to applications (eg. Web search). The applications maintain all of
their content making the naming system independent of the amount of content generated,
thereby removing a bottleneck from the system. As the content is spatial, applications need
to maintain pointers maps that can provide context about the location of their content with
respect to the real world. For example, to navigate users to their products of interest, the
application needs a localization service that can determine the position of the user within
the store. This inhibits incremental deployability of services. For example, consider the
supermarket sharding its localization service to provide it separately for the clothing and
electronics section, while decommissioning their store wide service. While this enhances ease
of maintenance for the store, it breaks applications that still point to the older store wide
service.

Map-centric design – The naming system associates locations with maps and the services
provided on these maps. Related maps can be grouped into separate zones and maintained
autonomously, just as physical regions are maintained by disparate entities. This system is
independent of content hosted against maps ensuring scalability. It also affords incremental
deployability. Applications author their content with respect to map elements, use stand-
ardized interfaces to obtain map services and are agnostic to which machines are serving
them. This is the design we choose for OpenFLAME . Table 1 shows the matrix of system
characteristics against design choices.
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Figure 19 AR indoor navig-
ation application built on Open-
FLAME .

Figure 20 Geo-domain Ex-
plorer. Figure 21 3D map creator.

Geo-based Bound Unbound
Geocode 3 3 3

Reverse-geocode 3 7 7

Routing 3 3 3

Localization 3 3 3

Tile rendering 3 3 3

Table 2 Map services that can be provided on different kinds of maps. 3 shows the service can
be provided on the map and its results can be combined with other maps if needed. 3 shows the
service can be provided on the map but its results cannot be combined with other maps. 7 means
the service cannot be provided on the map.

B Application and Tools

Figure 19 shows a screenshot of the 3D indoor AR navigation application built on Open-
FLAME . The Geo-domain Explorer tool (Figure 20) automates the process of generating
DNS records for registering a map server or zone with the DNS. We have hosted it on
https://www.open-flame.com/. The Waypoint Tagger tool (Figure 21) helps map creat-
ors tag map nodes and ways on their 3D scans. It also exports the map to be used with a
map server.

C Map Services on Heterogeneous Maps

Map services need to support a heterogeneous set of maps using different coordinate systems.
We call maps laid out in the global geographic system geo-based maps. Local maps (maps in
their own local coordinate system) can be further classified based on how they label areas
shared with surrounding maps. If a map uses the same labels for shared areas as the other
maps around them, they can be explicitly stitched together, so we call them bound maps.
Otherwise we call them unbound. The discovery system is agnostic to this heterogeneity and
discovers all maps and services for a given location.

Table 2 shows the different services that can be supported by each map type. Geo-based
maps can support all services. Location-to-address conversion (reverse-geocoding) cannot be
supported on local maps as they do not have a notion of latitudes and longitudes. Unbound
maps can support routing within the map, but the routes calculated in such maps cannot
be combined with paths from other maps as there are no common nodes.

https://www.open-flame.com/

	1 Introduction
	2 Example application
	3 Design
	3.1 Data Model
	3.1.1 Abstractions: Maps and Map Servers
	3.1.2 Organization of Map Servers and Zones
	3.1.3 Expressing Coverage

	3.2 Discovery Query Model
	3.3 Security model
	3.3.1 Threat model
	3.3.2 Chain-of-trust model for spaces
	3.3.3 Communication with Map Servers


	4 Implementation on DNS
	4.1 Why DNS?
	4.2 Geo-domains
	4.3 DNS records
	4.4 Map registration workflow
	4.5 Discovery query workflow
	4.6 Security/Validation

	5 Building Map Services
	5.1 Tile Server
	5.2 Forward and Reverse Geocode
	5.3 Routing
	5.4 Localization

	6 Implementation
	7 Evaluation
	7.1 Discovery
	7.2 Localization
	7.3 Routing
	7.4 Reverse Geocode

	8 Related work
	9 Conclusion
	A Design space exploration
	B Application and Tools
	C Map Services on Heterogeneous Maps

