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Abstract
When web applications wish to operate anonymously, they routinely host themselves as ‘Hidden

Services’ in the Tor network. However, these services are frequently threatened by deanonymization
attacks, whereby their IP address and location may be inferred by the authorities. We present
VaulTor, a novel architecture for the Tor network that ensures an extra layer of security for the
Hidden Services against deanonymization attacks. In this new architecture, a volunteer (vault) is
incentivized to host the web application content on behalf of the Hidden Service. The vault runs the
hosted application in a Trusted Execution Environment (TEE) and becomes the point of contact
for interested clients. This setup can substantially reduce the uptime requirement of the original
Hidden Service provider, thereby significantly decreasing the chance of deanonymization attacks
against them. Using a vault node in place of the hidden service node does not cause any noticeable
performance degradation when accessing the hosted content.
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1 Introduction

The enormous expansion of the world wide web is coupled with growing demands for
anonymity and privacy. Besides a huge end-user client base, an increasing number of web
services—legal and illegal—also choose to remain anonymous [2], fearing closure, or even
prosecution, by the government and law enforcement agencies [8]. The Onion Router (Tor) [5]
network has emerged as one of the most popular solutions for providing anonymity: nearly
3 million clients connect to Tor daily [9], and hundreds of thousands of anonymized web
addresses are published each day, with over 150,000 currently serving traffic to end users [17].

Tor Hidden Services (aka. Onion services) aim to uphold freedom of speech in repressive
regimes and offer circumvention in regions of undue and excessive internet censorship, thus
bringing benefits to the public [58]. At the same time, Hidden Services pave the way for
criminal activities such as selling illegal drugs and weapons [28]. All in all, there are incentives
for governments and law enforcement to deanonymize Hidden Service (HS) providers1 and
curb their operations. In 2014, the authorities of 6 European countries and the United

* These authors contributed equally.
1 Hidden Service Provider is an individual that owns the Hidden Service. They also create and serve the

content of the Hidden Service.
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17:2 Don’t get caught, keep your Onions in a Vault

States collaborated in Operation Onymous through which they cracked down on 416 Hidden
Services, accused them of foul play, and arrested 17 individuals [8].

We focus on the technical challenges of reinforcing the anonymity of hidden service
providers. We present VaulTor, a novel overlay architecture that builds upon Tor’s existing
HS design by introducing a vault node between the HS provider and clients. The HS provider
offloads service operation to the vault, which serves clients on the provider’s behalf. This
setup strengthens the anonymity of HS providers in three key ways:
1. After offloading their service, the HS provider may sporadically connect to the vault to

update content as and when needed, without the need to be online all the time. This
significantly reduces the attack surface against long-running deanonymization attacks on
the HS provider.

2. The HS provider may connect to the vault from widely varying locations, further reducing
deanonymization risk.

3. An adversary cannot make an on-demand connection with an HS provider. Communication
opportunities with the HS provider are now solely available to the vault, and even those
channels are initiated by the HS provider.
The service offloaded by the HS provider to the vault is hosted inside a Trusted Execution

Environment (TEE), such as the one provided by Intel-SGX [40]. Using a TEE brings
two additional benefits: (i) the vault owner (even with root access) cannot snoop on the
application code/data while it is being uploaded, served, or stored in the vault, and (ii) since
client and the HS provider contact the vault through similar encrypted channels, the vault is
never sure if it is an HS provider or a client it is communicating with, ruling out a myriad of
attacks against the HS provider (details in Sec 9.1).

The VaulTor architecture, which has no bearing on the client anonymity (discussed in
Sec 8.2), promises enhanced anonymity for the HS provider by shifting the deanonymization
risk to the vault owner (see Sec 8.3 for details). This design choice is suitable as the HS
providers may only be interested in content creation without taking the deanonymization
risk that leaps up when serving the content, even as a Tor Hidden Service. In contrast, the
vault owners are willing to serve the content in exchange for monetary benefits (such as
crypto payments2) or social incentives (serving content they wish to support and propagate).
A motivating example for our scenario might be a journalist in an oppressive regime who can
anonymously upload content banned in their regime to a vault located in a neutral country.
Another example may be providing ‘on-the-ground’ information from within a region where
internet outages frequently occur (and the HS provider cannot remain online for extended
periods).

VaulTor offers various attractive features not ubiquitous in alternate design choices: (a)
allows for hosting dynamic services, in contrast to data hosting services such as IPFS or
pastebin.com, (b) offers content isolation from the server administrator, in contrast to a
simple (non-TEE based) virtual machine-based approach, and (c) ensures that the server
administrator cannot snoop on private keys in order to serve arbitrary content on behalf of
the HS provider.

VaulTor also brings robustness to the HS operation. If a vault node is shut down by the
action of authorities, the HS provider can use a different one to make the content available.
Alternatively, if the HS provider goes offline permanently, the TEE can continue hosting the
content as long as the vault owner remains incentivized.

In VaulTor, the vault simply replaces and acts on behalf of the HS provider, responding

2 We discuss a secure way to do crypto transactions in Section 10.3
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to clients through network paths containing the same number of Tor nodes as if the content
is served by the HS provider in the existing architecture. Thus, the VaulTor design bears no
negative impact on the network latency. We do observe a slight average increase in the time
to first byte and time to last byte (a maximum of 5.7% and 2.9% respectively when using
Intel-SGX as the TEE), attributed to hosting the content inside a TEE which incurs its own
performance overhead (9.2.2).

To understand the operation of VaulTor, we note that a typical Tor circuit is an overlay
path through three volunteer relay nodes (the entry guard node, a middle node and the
exit node) on the Tor network [32]. Such a circuit provides one-way anonymity to a client
trying to connect via the circuit to any non-anonymous server on the web. If the server
wants to remain anonymous as well, it must also choose another Tor circuit with three
nodes [24]. The existing HS architecture anonymizes both the client and the server (two-way
anonymity) using a mechanism that stitches the two Tor circuits together (see Sec 2.2). With
the VaulTor architecture, a server that desires to be anonymous is facilitated to replicate,
and infrequently update, its web content, and service on the vault. This is similar to a CDN
node offering content replication to a server. The two-way anonymity continues to exist
between the vault node and the client, delivering similar delay performance as observed in
the existing hidden service architecture. Indeed, our results in Sec 9.2.2 confirm this. We
also consider a sample of popular deanonymization attacks and provide an outline of how
VaulTor offers enhanced HS provider anonymity under those attacks (see Sec 9.1). We also
discuss legal and deployability considerations for both HS providers and vault operators in
Sec 10.5 Altogether, this paper makes the following contributions:

A novel architecture of Tor nodes, used by VaulTor to provide robust anonymity to host
Hidden Services (HS).
Step-wise description of the protocol VaulTor uses to ensure anonymity of the HS provider,
vault, and the clients.
A thorough security analysis and description of the attacks that are mitigated by VaulTor.
A working prototype and its performance measurement over the actual Tor network. The
prototype is available at: https://github.com/RumaisaHabib/vaultor

2 Background

2.1 Trusted Execution Environments (TEEs)

TEEs provide a platform for secure remote computation which allows securely execut-
ing an application in a remote untrusted system without compromising the Integrity and
Confidentiality of the application data. Several hardware architectures provide TEE imple-
mentations [40, 31, 16, 48]. Our prototype implementation leverages the TEE provided by
Intel-SGX [40] to create a secure execution channel between the vault and the HS provider.
We host an HS inside the TEE which itself is set-up inside a vault (Sec 7). An instance of a
program running inside a TEE is called an enclave.

TEEs provide many guarantees. These include:
1. Sealing: A program running inside a TEE can encrypt and write data to the disk for

persistent storage. Only the same program running on the same device in a TEE can
decrypt this data.

2. Isolation: A program inside a TEE can not access the memory of its host and vice versa.
3. Remote Attestation: A piece of code running inside a TEE can prove, to an outside

observer, what piece of code it is and that it is running inside a TEE.

NINeS 2026
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A local trusted device may use the following simplified flow for remote attestation to
verify that a remote untrusted device is running the desired piece of code:
1. The local device builds the code and gets a measurement of the memory space3.
2. The local device sends the code to the remote device.
3. The remote device runs this code inside a TEE.
4. When running inside a TEE, the code can then request the CPU to generate a crypto-

graphic hash of the program’s memory space. This hash is then signed by the CPU using
a secret hardware attestation key embedded in the CPU.

5. The local device can request this signed measurement from the remote device. It then
verifies this signature by matching the measurement hash against one computed locally
and by verifying the signature against its public key.
We will stick to Intel-SGX terminology, in which the signed cryptographic hash is called

a quote. Furthermore, it should be noted that a small amount of arbitrary data (produced
by the code inside the TEE) can be embedded in the quote as well. This data is called the
REPORTDATA field. Different TEE implementations employ different means for signature
verification. Intel-SGX, for example, requires sending the quote to Intel’s online Attestation
Service which verifies that the quote is valid. The local device also has the option to perform
this attestation via a proxy (such as Tor).

The REPORTDATA field is crucial for establishing a secure connection with an enclave
(program running within the TEE). This field routinely contains a public key whose corres-
ponding private key is known only to the enclave. This public key can then be used to create
a secure connection with the enclave using any form of key exchange such as Diffie-Hellman.

2.2 Conventional Tor architecture
In the current Tor protocol, there are 6 Tor nodes between a client and a hidden service (HS).
This ensures two-way anonymity, i.e., both the client accessing the HS and the HS provider
itself remain anonymous. Hidden services are identified using an onion URL. Figure 1 and
the following points detail the protocol for the establishment of communication between an
HS and a client in the current architecture.
1. An HS provider contacts a relay and asks them to act as an Introduction Point (IN)4.

The HS provider receives an acknowledgment from the IN.
2. The HS provider creates an “Onion service descriptor” which includes the public key for

the HS and the IP addresses of its INs. This descriptor is signed by the public key of the
HS. The HS provider sends this to a HSDir. The HS provider gets an acknowledgement
from one of many Hidden Service Directories (HSDirs)5.

3. A client asks the HSDir for the service descriptor of the HS. They receive and verify the
signature of the HS.

4. The client picks a Tor relay to act as a Rendezvous Point (RP) and establishes a Tor
circuit to it. The client gives the RP a Rendezvous cookie.

5. The client sends the same Rendezvous cookie and the IP address of the RP to an IN.
6. The IN forwards the cookie and Rendezvous address to the HS provider.
7. The HS provider makes a Tor circuit with the Rendezvous Point and sends the cookie.
8. The Rendezvous Point compares the two cookies and, if they match, relays communication

from both sides to each other.

3 This includes the code itself, the data, the stack, and the heap.
4 IN is chosen to be distinct from Internet Protocol (IP)
5 HSDirs are special relays that store and provide hidden service descriptors to the clients.
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Figure 1 The current implementation of hidden services. Red paths represent information flow through
Tor circuits with 6 nodes. Green paths represent information flow through Tor circuits with three nodes.
Blue paths represent information flow through Tor circuits with only two nodes.

3 Related work

There are two notable prior works that leverage TEE technology to improve Tor. In SGX-
Tor [45], different nodes (such as Directory authority, HSDir, and middle nodes) run the Tor
software in TEEs so that they cannot be modified to collude and launch deanonymization
attacks. In contrast, VaulTor reduces the deanonymization threats by not requiring the HS
provider to be online. Furthermore, VaulTor is an architectural solution that does not require
any Tor node to run their service within TEE (unless they volunteer to be a vault), thus
maintaining backward compatibility for Tor nodes.

Another approach, SmarTor [14], utilizes TEEs and smart contracts to decentralize
directory authorities (which are currently a few trusted and centralized servers) in the Tor
network. The authors argue that this would increase the security of the Tor network as it
would reduce the need to trust particular servers and make it more difficult for governmental
authorities to crack them down. VaulTor, on the other hand, leverages the privacy guarantees
provided by the TEEs to create trust by allowing a separate, new entity (the vault) to host
web application content, thus making it harder to deanonymize the Hidden Service provider.

Additional prior works [7, 20, 55, 62] have also suggested modifications to the Tor network
to enhance HS anonymity. Sec 10.1 discusses these solutions and their potential use cases.
There exists a whole body of work aiming to improve the Tor network in general. Security
improvements include a layered mesh topology [33] for circuit formation and prevention
of route capture attacks [51]. There has also been work to improve client-side stability in
censored regions using WebRTC [25, 35, 19].

Performance improvements include optimizing the Tor path selection algorithm [12, 15,
59, 65] and load balancing techniques [13, 30, 44]. In particular, CenTor [17] considers serving
content from multiple CDN-like content replication nodes to improve the content delivery
time. These improvements can be applied in conjunction with VaulTor to further optimize
the anonymity network (see Sec 10.1).

4 Design Goals

Our design goals are meant to ensure enhanced anonymity for HS-provider, while ensuring
that anonymity guarantees for other parties (i.e., client, vault node) remain intact.

NINeS 2026



17:6 Don’t get caught, keep your Onions in a Vault

We will outline our design goals succinctly here:
1. Ensure that the anonymity guarantees for the HS provider in VaulTor are at least as

strong as an HS provider in the conventional Tor architecture.
2. Minimize the uptime for the HS provider, shrinking the attack surface against them.
3. Ensure that the anonymity guarantees for the newly introduced Vault node are at least

as strong as those for an HS provider in the conventional Tor architecture.
4. Ensure that the anonymity guarantees for the client remain at least as strong as those for

a client in the conventional Tor architecture.
5. Ensure that the HS provider retains full control of any content that is being served on its

behalf.
6. Ensure that the system is able to serve rich content (not just limited to static content).
7. Ensure that the system is backward compatible and is built using off-the-shelf components

and technology.

5 Alternate hosting options

The VaulTor architecture meets all our design goals specified in Sec 4. Other simple
alternatives for anonymous content hosting may not satisfy this requirement. This section
considers two such possible alternatives and describes why they are unable to achieve the
full set of our design goals.

5.1 Using a static content hosting service

An HS provider may upload static content to a data hosting service like an IPFS. While
it is possible that the HS provider is able to upload content securely, this content can not
be modified dynamically and, thus, fails to meet our fifth design goal. For example, an
HS provider trying to a run a forum online will not be able to get posts or comments by
clients. VaulTor permits dynamic content to be served which allows the HS provider to host
complicated websites on an external server.

5.2 Hosting on the cloud

An HS provider may host data dynamically on a virtual machine present on an external
server (or a public cloud). They may use a remote login tool such as SSH (and the Tor proxy)
to anonymously access the server and upload their content. However, the administrator of
the server (with root access, or the cloud operator) may be able to access and modify this
data even if the HS provider wishes to restrict access. This means the provider does not
maintain full control over the content, violating the fourth design goal.

In VaulTor, the administrator cannot access data that is present inside the TEE. This
data exists either in an encrypted manner on the disk or is only accessible to the TEE if the
data is in the main memory. Lastly, as both the client and HS provider make an encrypted
channel with the TEE, content is safe while in transit.

An HS provider that uploads their content to an external server (via SSH or through
other means) is not guaranteed that this content will be served without modification. The
administrator of this server may modify this content (while keeping the same URL and x509
certificate) and serve content that the administrator desires. This is possible because the
administrator can snoop the private key from main memory or storage, presenting a major
threat to client anonymity. On the other hand, VaulTor guarantees that the content served
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to a client is the content intended by the HS provider. The enclave creates a certificate and
is the only entity (alongside the HS provider) that can serve this content.

An HS provider may choose to provision cloud services that enable TEEs and host
their content inside one. In this scenario, the cloud would act as an intermediary, reducing
the uptime requirement for the HS provider. However, provisioning cloud services isn’t
anonymous. Know-your-customer (KYC) and/or payments via fiat currency can compromise
the anonymity of the HS provider. It would also necessitate online transactions, which may
be untenable in regions of instability, where volunteer vaults may be the only option.

6 Threat Model

We make realistic assumptions about the objectives and capabilities of adversaries. An
adversary may have access to a small fraction of Tor relays and sufficient resources to qualify
as a guard relay, HSDir, or a vault. Moreover, a malicious vault may be able to target specific
HSes to host in their machine for the explicit purpose of deanonymizing the HS provider and
clients of that service or for the purpose of modifying that service. Even a strong adversary
will have a limited ability to acquire network traffic from ISPs and monitor traffic patterns
between an end user and a guard node. We wish to protect the anonymity of the HS provider
from this adversary and retain the control of the HS provider over any content that the HS
is providing. In addition, a malicious HS may attempt to deanonymize a specific vault by
hosting their web content on a TEE that the vault runs. As discussed in sec 2.1, we do not
consider side-channel attacks.

We also assume that any two entities (amongst the vault, HS provider and client) can
collude to launch an attack against the third. For example, an HS provider and a client may
work together in an attempt to deanonymize a vault.

Moreover, we assume a careful HS provider. That is, we assume that the HS provider
does not leak identifying information in the content it provides. Furthermore, at time t, it
will refuse to offload any content to a vault unless it verifies that, at time t, it is connecting
to a valid enclave (this is a realistic assumption as verification is an easy task). Similarly, we
assume a careful vault. That is, a vault inspects the program provided by an HS provider for
malicious code, and will not run this program if it deems it malicious.

7 VaulTor

7.1 Architecture
Building upon the conventional Tor hidden services architecture (Sec 2.2), VaulTor introduces
three new entities: a device which we refer to as a vault, a TEE which will host an enclave
and an optional external attestation service. The enclave is present inside the vault (see
Figure 2) and utilizes its computational resources.

In VaulTor, a willing device may offer to host content by advertising itself as a vault. This
can be achieved without modifications to the current Tor architecture. The vault creates
an onion address for itself (we shall refer to this onion website as the Vault Contact Hidden
Service (VCHS)) to facilitate correspondence with potential HS providers. Vaults may ask
for compensation for hosting an HS (further discussion on incentives is given in Sec 10.3). In
this scenario, the vault has the same privacy guarantees that the Hidden Services have in
the current Tor architecture.

The HS provider can reach out to a vault through the vault’s VCHS and provide a basic
program which we shall refer to a host program (HP) that 1) hosts a web server and 2)

NINeS 2026
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Figure 2 Our proposed implementation. Red paths represent information flow through Tor circuits
with 6 nodes. The data inside the enclave is secure and information flow through the arrows is encrypted
i.e., the vault owner can not interpret it.

provides an interface through which (only) the HS provider can upload or remove content
when they wish to update their website6. This program must be running inside an enclave
to provide the privacy guarantees detailed in this architecture. Thus, the HS provider must
verify that the enclave has been correctly set up (i.e., the program is running without any
modifications to the code and within a TEE) before it provides all of the content it wishes
to host and any incentives to the vault owner. Future content is also provided through the
same update interface described earlier. This process is outlined in detail in Sec 7.2.2.

The TEE guarantees security and privacy for any content the HS provider transfers into
the vault. In addition, it removes the requirement for continuous up-time of the original HS
provider as the enclave can continue servicing the clients. While the vault must remain online
to serve web content, the HS provider does not have this obligation and is hence protected
from various deanonymization attacks (Sec 8).

Our architecture ensures increased anonymity and flexibility for the HS provider, minimal
decrease in performance for a client (while maintaining the same security guarantees that
Tor provides), and a level of anonymity for the vaults that is comparable to that of HSes in
the current Tor architecture.

7.2 Protocol

7.2.1 Host Program (HP) Creation
Before an HS provider contacts a vault, it must write a host program that is intended to run
within the TEE. This program should provide the following key functionalities:

It should host a server7 bound to a port. This server should be able to handle POST and
GET requests. Furthermore, the code should be able to handle requests dynamically. For
example, it should be able to store files uploaded by a client in separate directories.

6 The interface asks for a secret and after it is verified, the content can be uploaded or removed as desired.
Since the secret verification occurs within the script that is running within an enclave, the vault cannot
tamper with it without being noticed by the HS provider.

7 Common servers such as Apache or Nginx can be used.
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The HP should, by default, provide an interface on the server to input an authentication
secret. If the secret (which is known to the HS provider) passes the hardcoded verification
in the HP, the HS provider should be allowed to modify the contents of the enclave
directory. The authentication key can either be a password that is hashed and compared,
or it could be the HS provider’s private key whose corresponding public key is written in
the HP.
Upon starting the server, the program should generate a quote file, that can be verified
by the HS provider or a client (details given in Sec 7.2.2). This quote file is available in
the web directory and can be accessed by the HS provider or the client for verification
through remote attestation as described in Sec 2.1.
The HP should provide some functionality to create backups of the hosted content in
case the vault crashes. Backups are stored on the disk but encrypted using the enclave’s
sealing key. This sealing key is deterministically generated by the CPU depending on
the program running inside the TEE and the key burnt into the CPU. This key is only
available to the enclave.
Running an arbitrary application inside a TEE is not straightforward. However, a library

OS (libOS), such as Gramine-SGX, facilitates this process with minimal modifications to the
application. Furthermore, since the entire libOS is contained inside the TEE, no inspection
of the application code is necessary. To this end, we assume that a libOS like Gramine-SGX
is available to the vault.

7.2.2 Bootstrapping

The vault owner hosts and advertises the onion URL of its VCHS. The HS provider, vault
owner and the HP (running inside a TEE) take the following steps to host their service in
the vault (also shown in Figure 3):
(i) The HS provider creates the HP (with the functionality described in Sec 7.2.1).
(ii) The HS provider uploads the HP at the VCHS. It is important to note that the host

program is uploaded in plaintext (either as a script or a binary).
(iii) The vault owner runs the HP inside a TEE, hosts a hidden service (we shall refer to

this as yourHS.onion), and binds it to the network port on which the host program will
handle incoming requests.

(iv) The host program will generate a public-private key pair (Psrv, Ssrv) for the hidden
service it provides. Psrv is made available to anyone who connects to yourHS.onion while
Ssrv only exists as a variable inside the enclave’s memory (and is sealed to the disk for
persistent storage).

(v) The host program generates a quote which represents Psrv
8 and the program. This quote

is available to anyone accessing yourHS.onion.
(vi) The HS provider accesses yourHS.onion, retrieves the quote, and verifies that the quote

is legitimate9.
(vii) The HS provider creates a secure connection with the enclave using Psrv and any form

of key-exchange such as Diffie-Hellman. This public key (Psrv) may be embedded in a
self-signed x509 certificate in order to facilitate https connections.

8 If the size of Psrv is too large to fit inside the REPORTDATA of the quote, a hash of Psrv may be used.
If Psrv is embedded in a certificate, then typically the certificate hash is used.

9 In Intel-SGX, this may involve sending this quote to Intel’s online attestation service. In RISCV
Keystone, the end user can verify the quote themselves.

NINeS 2026
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(vi)

HS

Provider

Attestation

 service

(vi-ix)

Client (x)

ENCLAVE

VAULT

(i)

(iii)

(iv,v) (xi)

(ii)

Figure 3 Our proposed implementation. Red paths represent 6-node circuits and green paths represent
3-node circuits.

(viii) The HS provider supplies the authentication secret over this secure connection, after
which it can securely upload content (such as HTML, CSS, PHP, and JavaScript files).

(ix) The enclave hosts the uploaded web application content.
(x) Any client that connects to yourHS.onion can interact with the hosted web application.
(xi) The enclave regularly encrypts and backs up these files into non-volatile storage using the

sealing key.
This procedure ensures increased anonymity for the HS provider. Their data is hosted in

the vault and the vault owner can not access data inside the enclave or read the traffic in or
out of the enclave. Figure 4 provides a flow diagram of this process detailing some decisions
the HS provider must make while uploading to the vault.

Figure 4 The steps taken in order for an HS provider to trust and upload to a vault.
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7.3 Enclave Isolation
To ensure the protection of the vault, the enclave must have limited privileges. The following
conditions, at minimum, are necessary:
1. The enclave has access to a fixed, and limited, amount of RAM. One possible way to

achieve this is by running the enclave within a virtual machine10 configured with limited
memory. This prevents an enclave from occupying all available RAM, thus safeguarding
the performance of other programs on the vault.

2. The enclave can only use a fixed amount of persistent memory. This can be achieved by
isolating the enclave in a separate disk partition. This prevents an enclave from completely
filling up persistent disk space that should be available to other programs on the vault.

3. The enclave can only use a fixed amount of network resources. This is possible by
controlling the network traffic rate through Trickle [6].

4. Any connections going out from the enclave must be restricted to only go via the Tor
Proxy. This can be done by creating rules in iptables [4]. This is necessary to ensure that
the IP of the vault is not made available to the HS provider. Any traffic that is not going
out through port 9050 (the default Tor Proxy port) is blocked by a firewall. Furthermore,
any traffic going to the Host Program must originate from the Tor client 11.

7.4 Client connection
A client must ensure that it is connected to the correct HS identified by its Psrv (embedded
in an x509 certificate). To this end, the HS provider distributes not only the onion URL
but also the hash of the x509 certificate when it wishes to advertise its service (similar to
how conventional onion URLs are advertised). When connecting to an HS hosted on a vault,
the client only needs to verify that the x509 certificate supplied by the service matches its
advertised hash to ensure that it is connected to the appropriate entity. The client may
maintain a list of valid certificate hashes12. Note that the client never has to perform remote
attestation themselves.

The client in VaulTor is exactly the same as a client in the conventional Tor architecture –
they use the same connection protocol. Layered on top of this is the ability to match an x509
certificate (or its hash) with the one that is advertised by the HS provider. This matching
can be done trivially with a browser extension to the Tor browser.

8 Attack surfaces

In this section, we specify the anonymity guarantees the VaulTor provides to each of the
three entities: the client, the vault, and the HS provider. We consider the scenarios where
each of these can be malicious as well as the scenario in which two of them collaborate
to deanonymize the third. VaulTor enhances HS provider anonymity and leaves the client
anonymity as it is. We further show that our new actor—the vault—is as protected as an
HS provider in the current Tor Hidden Services architecture.

8.1 HS provider Anonymity

10 The maximum ram must be set in Intel-SGX at enclave creation time.
11 This is to done to preserve vault anonymity from a malicious HS provider as discussed in 8.3.
12 Checking of certificate hash is trivial and may be added as a subroutine in the client’s Tor browser.
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Scenario 1: Malicious client
The HS provider no longer interacts with the clients directly. To access the web application

content, the clients now establish a connection with the vault instead. Thus, unless the HS
provider leaks identifying information in their content, they are safe from deanonymization
at the hands of a client.

Scenario 2: Malicious vault
In the traditional Tor design, where the client and HS provider communicate over a

two-way anonymous channel initiated by the client, the attack scenarios in Table 1 render
the client a harder anonymity target by a malicious HS provider than an honest HS provider
by a malicious client. A mirror situation exists in the VaulTor design where the HS provider
uploads and updates the content on a vault over a two-way anonymous channel. Thus,
even in the worst case, an HS provider in VaulTor is as anonymous as an HS provider in
the traditional architecture. Furthermore, the minimal uptime requirement enhances the
anonymity of the HS provider in VaulTor architecture. The use of TEE at the vault offers
additional guarantees of data integrity and data confidentiality to the HS provider.

Scenario 3: Vault and client collude
The attack opportunities open to a client are a subset of the attack opportunities possible

for a vault (since a vault has the same privileges as a client and more). Thus, the protection
guaranteed for an HS provider from the vault applies in a scenario where the vault and client
may collude.

8.2 Client privacy

We now show that a client is as protected in VaulTor as they are in the current Tor
architecture.

Scenario 1: Malicious HS provider
The HS provider is completely disconnected from the client, and hence is unable to launch

attacks on the client directly.
Scenario 2: Malicious vault
A malicious vault may attempt to a) serve modified content or b) launch a deanonymization

attack on the clients. We now show why these attacks are not feasible in our architecture:
a) As the content is being hosted inside an enclave, clients can ensure that any content

being served by the vault has not been maliciously modified. Since the x509 certificate
is generated by the HP running inside a TEE and the corresponding private key (Ssrv)
is only available to the TEE and the HS provider, a secure connection established using
the certificate is guaranteed to be serving content vetted by the HS provider. Another
consideration is that the content being hosted inside a vault is regularly encrypted and
backed up to the disk. While this backed-up data can not be modified, a vault owner can
selectively delete this backed-up data and restart the program in the enclave. This may
result in the enclave accidentally serving outdated data to clients. However, if pieces of
content are properly timestamped, the TEE can refuse to serve content that is outdated
or add warnings while serving this content.

b) In VaulTor, a client’s perspective of the Hidden Service architecture remains the same. A
client still accesses content through a 6-node connection–except that instead of connecting
to the HS provider, it connects to a vault. Thus the client enjoys the same privacy
guarantees as a client in the conventional Tor architecture. Furthermore, as discussed in
sec 10.8, the client may enjoy enhanced data privacy.
Scenario 3: Vault and HS provider collude
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A colluding vault and HS provider in the VaulTor architecture have the same attack
opportunities against a client as a malicious HS provider in the conventional Tor architecture.
Thus, the deanonymization risk for the client is the same as when only the vault is malicious.

8.3 Vault privacy
VaulTor introduces a new entity in the Tor architecture: a vault that assumes a role similar
to that of an HS in the current Tor design, thus maintaining a similar level of protection
against deanonymization attacks.

Scenario 1: Malicious client
A vault is as vulnerable to a client as a Hidden Service is in the traditional Tor network.

One may even argue that the vault has stronger anonymity guarantees due to the fact that
the web application content is hosted within an enclave (a secret, protected environment
the vault cannot modify). This may provide plausible deniability to the vault as it would be
blind to the traffic that enters and leaves its enclave.

Scenario 2: Malicious HS provider
A vault is protected from attacks launched by an HS provider through the Host Program

by ensuring that the safety criteria specified in Sec 7.3 are satisfied.
Consider a malicious HS provider who uploads code that tries to obtain identifying

information about the vault by leveraging the fact that the enclave is utilizing the vault’s
hardware. For example, this code may try to read files belonging to the vault or the vault’s
OS in order to directly find identifying information or it may try to obtain its IP indirectly by
pinging an external server. The security guarantees provided by TEEs make direct attempts
impossible; the host is also isolated from the TEE just as the TEE is isolated from the host.
Furthermore, most applications for TEEs run in a VM (as is the default in gramine-SGX [1]),
adding to the isolation. Indirect attacks are also mitigated using a firewall. By ensuring that
all outgoing traffic is ported through port 9050 (the default port for Tor), only the IP of the
exit node is available to the Host Program.

Furthermore, by ensuring that all requests originate from the Tor client software on the
vault, the vault is protected from pinging based attacks. If this is not done, a malicious HS
provider may upload a simple Host Program that replies with a unique phrase to the HS
provider’s IP when this Host Program is pinged. The HS provider may then ping various
candidate IPs in the hopes of stumbling upon the vault’s IP which would reply with the
phrase. This sort of attack is only possible if the Host Program can be pinged directly, from
outside the Tor client software.

Scenario 3: Client and HS Provider collude
The HS provider is in a unique position as it directly provides code that the vault runs

within an enclave. If an entity controls both the HS provider and a client node, we consider
an attempt to launch a watermarking attack (described in Sec 9.1). This attack, in particular,
only requires the control of two entities connected to the third. Moreover, the fact that the
HS provider and client can make repeated on-demand requests to the vault further benefits
the viability of this attack.

To attempt to launch a watermarking attack (similar to what [38, 39] describe), the HS
provider would add some watermark to the Tor traffic that can be identified at the client
end. Despite controlling both the HS provider and a client, an attacker would not have
the ability to successfully launch a watermarking attack on the vault. This is because of a
missing component that this attack requires: the control of a guard relay. If we also assume
the control of a guard relay, the HS provider is no longer necessary, as the guard relay can
be the entity that watermarks the traffic. A guard relay and client could potentially launch
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this attack on their own without the requirement of an HS provider. Hence, the vault is as
protected from a watermarking attack as an HS is in the current architecture. Scenario 3 is
thus akin to having two malicious clients in the conventional Tor architecture.

9 Evaluation

In this section, we will qualitatively evaluate the effect of VaulTor in deflecting various
families of existing attacks on HSes from the HS provider to our new Vault node. Afterwards,
we will quantitatively measure the performance impact of VaulTor on client side network
performance.

9.1 Known Attacks Deflected
We will list various attacks and briefly explain how the VaulTor architecture deflects them
from the HS provider to the vault. This list is non-exhaustive yet exemplifies the prominent
attacks in recent years.

Clock Skew: These attacks rely on repeatedly sending requests to an HS in order to heat
up its CPU which has some tangible effect on the timestamp of incoming packets [60, 52]. In
VaulTor, this is impossible. No one can repeatedly send packets to the HS provider.

Congestion: This attack relies on an adversary congesting existing guard nodes in the
network [42], forcing the HS to connect to their compromised guard node long enough for
the adversary to correlate traffic. This attack is completely deflected in VaulTor; the HS
provider is sporadically online for limited periods and an adversary would have to congest
the network indefinitely.

Fingerprinting: These attacks rely on learning the traffic patterns of an HS and
referencing this against the traffic of a candidate set of guard nodes [46, 57, 53, 36]. In our
architecture, the vault is serving the traffic while the HS provider is taciturn. Thus, this
type of attack will not work on the HS provider. Similar attacks that rely on compromised
middle nodes [41] are similarly deflected.

Guard Node Discovery: The Tor developers currently consider this the most potent
threat against hidden services [7]. This attack relies on making multiple connections with
the HS provider such that their malicious middle node is next to the HS provider’s guard
node. Repeated, on-demand connections with the HS provider are impossible in VaulTor.
As such, this attack is eliminated.

Location Leaks: Such attacks rely on the negligence of the HS provider and are out of
the scope of this paper [49].

Watermarking: In this type of attack, an adversary watermarks traffic on the client side
in order to detect it at the malicious guard node of the HS provider [38, 39]. If a malicious
vault node tries to launch this attack on the HS provider, this attack would be rendered less
effective because HS-provider would have minimal uptime connection with the vault code
instead of a constant connection.

Table 1 shows the various scenarios in which an adversary can launch a deanonymizing
attack on Tor Hidden Services along with the impact of VaulTor on these attacks.

9.2 Performance
It is important that the security improvements VaulTor brings do not significantly degrade
client side network performance. Important client side performance metrics include the
network latency and the throughput. In this section, we detail our experimental setup (which
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Scenario Attack Categories VaulTor impact
Adversary can send
arbitrary requests
to the HS provider

Clock Skew, Watermarking,
Guard Node Discovery,
Fingerprinting

Scenario
eliminated

HS Provider has
high uptime

Clock Skew, Watermarking,
Congestion, Fingerprinting

Scenario
diminished

High volume of
traffic coming from
the HS provider

Watermarking, Congestion,
Fingerprinting

Scenario
diminished

Table 1 Various scenarios that lead to categories of contemporary attacks on Tor Hidden Services
along with the impact of VaulTor on these scenarios.

includes our implementation of a vault) and our evaluation of these metrics. Our experiments
measure the time experienced by the client to retrieve the data from an HS; the registration
and bootstrapping processes in VaulTor occur only once and have a negligible13 performance
impact in the overall lifetime of the HS.

9.2.1 Experimental setup
To measure and compare the network performance of Hidden Services when hosted within
and outside a TEE, we ran two instances of a Host Program on the same machine. One of
these HPs ran inside a TEE (facilitated by the gramine-SGX library OS [1]) while the other
HP (which we shall refer to as a vanilla HP) ran outside a TEE. A Tor client14 was also
launched on the same machine which generated two onion URLs: one for the enclave and
one for the vanilla HP. The Tor client directs traffic for each of these onion URLs to their
respective HPs, allowing them to serve content via Tor.

Both the enclave and the vanilla HP ran webservers and, in order to ensure consistency,
served the same landing webpage simultaneously. In addition, the HP running inside a TEE
had the ability to generate a quote in order to facilitate remote attestation. Both web servers
were written in Python3 and regularly backed up data to persistent memory. Moreover, these
webpages were hosted on the same device with an SGX-enabled Intel processor (Core-i5
10210U).

We conducted these experiments with three webpages, each with varying page sizes
(0.5kB, 50kB, and 5000kB). The content on these webpages included HTML and JavaScript.

We measured the performance using three methods:
1. Random Relays: We restarted the Tor application between each measurement to establish

fresh circuits. This gave us three random relays for every measurement.
2. Fixed Relays: We used fixed/constant relays15 across webpages for both VaulTor and Tor.

We report the average performance of three different fixed circuits.
3. Local: We locally accessed the webpages.
Each webpage was loaded 250 times in each of the methods, save for the Fixed Relays method,
for which we loaded each webpage 250 times on each circuit (a total of 750 measurements)
and took the average of the results. Methods (1) and (2) were conducted on the actual Tor

13 This performance impact will only be negligible if uploading content does not significantly increase the
uptime of HS provider.

14 This client is not the same as a client in Tor architecture which we have discussed above. This is a
program necessary to interact with the Tor network.

15 These were chosen randomly from advertised Tor relays here: https://www.dan.me.uk/tornodes
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network.
We thus quantified any overall changes in performance caused specifically by hosting an

HS within a TEE.

9.2.2 Results

0.5 50 5000
Webpage size (kB)

0

50

100

150

Ti
m

e 
(s

)

Tor VaulTor

(a) Random Relays, TTFB

0.5 50 5000
Webpage size (kB)

0

10

20

30

Ti
m

e 
(s

)

Tor VaulTor

(b) Fixed Relays, TTFB

0.5 50 5000
Webpage size (kB)

0.00

0.01

0.02

0.03

Ti
m

e 
(s

)

Non-TEE TEE

(c) Local, TTFB

0.5 50 5000
Webpage size (kB)

0

50

100

150

Ti
m

e 
(s

)

Tor VaulTor

(d) Random Relays, TTLB

0.5 50 5000
Webpage size (kB)

0

10

20

30
Ti

m
e 

(s
)

Tor VaulTor

(e) Fixed Relays, TTLB

0.5 50 5000
Webpage size (kB)

0.00

0.01

0.02

0.03

Ti
m

e 
(s

)

Non-TEE TEE

(f) Local, TTLB

Figure 5 Time to first byte (TTFB) and time to last byte (TTLB) for webpages with varying page
sizes without and within a TEE. Error bars represent 99% confidence intervals.

Figure 5 shows the time to first byte (TTFB) and time to last byte (TTLB) for the 3
webpages hosted in the 2 architectures (the current architecture and VaulTor).

We note a minimal difference in performance across webpages and testbeds. Note that,
for most of the results collected over Tor, the average TTFB and TTLB in the VaulTor

architecture fall within the 99% confidence interval of those of the current architecture. The
only result (collected over the Tor network) that lied outside the confidence interval was for
the TTLB of a 5000kB webpage routed through fixed relays. This had an average increase of
2.9%.

If we consider all the results, including those that lie within the confidence intervals, we
note a maximum increase in TTFB and TTLB of 5.7% (5000kB, Random Relays) and 2.9%
(5000kB, Fixed Relays), respectively.

It should be noted that running an arbitrary program inside an Intel-SGX TEE may have
a non-negligible computation overhead. When accessing the webpages locally (and hence,
not over the Tor network), we note a maximum percentage increase in time in the case of
the TTFB of a webpage of size 50kB (15.9%). However, this delay is negligible compared to
delays caused by Tor’s network latency. As such, it is not surprising that the percentage
performance overhead of VaulTor over the conventional Tor architecture is minimal when
measured over the real Tor network.

We believe this nominal decrease in performance is justified considering the major
anonymity benefits VaulTor brings to the HS provider.

9.2.3 Ethics
We had ethical considerations while conducting our performance measurements. We solely
collected timing information and the size of the files we downloaded. We did not store the
IP addresses of the entry and exit nodes, so as to preserve their anonymity. In addition, our
load on the Tor network was negligible. We ensured this by conducting the experiments
serially, and not in parallel, to minimize the load at any given time. To the best of our
knowledge, we did not hinder any other users’ experiences on the Tor network.
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10 Discussion

10.1 Additional Anonymity Measures

There exist a number of proposals (such as [7, 20, 55, 62]) that enhance the anonymity of
the HS provider. These solutions, however, result in degraded network performance (longer
delays and lower throughput) for the client, when used in the conventional HS architecture.
This reduction in network performance renders these solutions less attractive today. With
the VaulTor architecture, the vault serves the content to the clients, and any retrofitting at
the HS provider side has no bearing on the network performance experienced by the client.

For example, the Vanguard add-on [7] (which inserts additional hops in the connection)
may be used by the HS provider without affecting client-side performance. Similarly, privacy-
preserving path selection methods [20, 55, 62] may incur latency costs but are a non-issue
for an HS provider that connects with the vault infrequently.

Furthermore, techniques like temporary proxies are completely compatible with our
system and may be used by clients and the HS provider to connect to vaults to obfuscate
their traffic [25, 35, 19].

10.2 HS Provider Flexibility

In the current Tor architecture, the HS provider must remain static in order to serve content.
The flexibility offered by VaulTor can be leveraged by the HS provider to communicate from
secure and variable locations. This would especially be beneficial in the context of activists or
journalists who want to report their content from secure intermediate locations in oppressive
regimes without the risk of getting caught. Moreover, VaulTor would allow the HS provider’s
content to remain accessible during Internet outages, which is commonplace in regions with
political instability and censorship [21, 22].

10.3 Incentives for Vault Node

10.3.1 Monetary Incentives

The vault owner proxies for the HS provider and, on its behalf, serves content to the clients.
This act must be incentivized for the vault owner. These incentives may be social incentives
– similar to how users of Tor run relays and nodes.

However, if incentives are monetary, they must be exchanged in a secure and private
manner. Towards this end, a blockchain may be used to ensure that the vault owner receives
cryptocurrency rewards for hosting content for the HS provider. One approach to this is that
the vault owner supplies the HS provider with their address on a public blockchain such as
Ethereum [67]. Only if regular cryptocurrency payments are made to this public address
does the vault owner continue hosting. This allows both the HS provider and the clients to
“crowdsource” an HS on a vault.

This previous approach does necessitate timely payments from the HS provider. This
requirement can be removed via the use of smart contracts. A smart contract can lock
the cryptocurrency that it receives from the HS provider and clients. The smart contract
can then use an oracle to verify that the HS is being hosted properly and perform remote
attestation. If the HS is being hosted properly and the remote attestation is successful, the
smart contract releases the cryptocurrency to the vault’s blockchain address. In order to
preserve privacy, zero knowledge enabled cryptocurrency such as Zcash [23] can be used.
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Furthermore, a Decentralized Exchange (DEX) may be used to trade cryptocurrency. These
measures reduce the possibility of profiling based attacks.

For example, a vault owner may make their zero-knowledge blockchain address (such as
for monero [56]) available on VCHS and the HS provider may anonymously transfer this
cryptocurrency by publishing their transaction by connecting to an external blockchain node
through the Tor proxy. In a zero-knowledge blockchain, the transaction itself will have no
identifying information present in it that may be used for social engineering (such as, by
using chain analysis tools).

10.3.2 Altruistic Reasons
Vault operation may also be motivated by altruistic considerations rather than direct financial
compensation. This model closely mirrors the operation of Tor relays, where participants
voluntarily contribute resources to enhance privacy, censorship resistance, and overall network
resilience without receiving monetary rewards. While operating a Tor relay may incidentally
support unlawful activities, it also enables many socially beneficial uses, such as protecting
free expression and providing access to information under restrictive conditions. Similarly,
vault nodes may be used for both benign and potentially abusive purposes; however, their
primary value lies in supporting privacy preserving and censorship resistant services.

Similar altruistic participation models exist in other systems, including running VPN
or proxy servers for community use, and operating public Network Time Protocol (NTP)
servers. In these cases, operators are motivated by a desire to support open infrastructure,
enhance collective security, or contribute to public-good Internet services.

10.4 Plausible Deniability for Vault
In the VaulTor architecture, a vault owner is not privy to the content present inside the
TEE. We believe that this adds an extra layer of plausible deniability, greater than the
plausible deniability of conventional data hosting services that are aware of the content being
served. When hosting content on behalf of an HS provider, the only thing the vault owner
knows is the Onion URL of the Hidden Service. This has a parallel with Guard Nodes in the
conventional Tor architecture that know what Onion URL’s traffic is routed through them.
Both the vault and the guard node can not read this traffic or compromise its integrity, only
help move this content. The only difference is that the physical storage resources of the Vault
owner are being used. However, even this physical storage is encrypted and opaque to the
Vault owner which is not privy to the information being served, just like a guard node.

In our future work, we can enable vault owners to run a Tor client inside an enclave and
run the HP inside another enclave on the same machine. The Tor client generates a new
onion URL and shares it (only) with the Host Program. The HP then serves content on
this onion URL using the Tor client as a proxy. The HP also forwards the onion URL to
the HS provider who can then advertise it as before. In this scenario, the client does not
need to modify their browser. As such, the vault owner is not aware of the content they are
serving. In this scenario, they can not be held liable for the content they are serving as the
information about which machine is serving what content is available to “no one”. And “no
one” includes the vault owner and the HS provider.

10.5 Legal and deployability considerations
VaulTor is a technical design that aims to improve the anonymity and availability of hidden
services. While it does not change Tor’s underlying trust or threat model, legal and regulatory
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constraints may nonetheless become a practical barrier to deployment. For example, a vault
operator could face legal risk for hosting third-party content that is alleged to be unlawful
(e.g., infringing or prohibited content), even if the operator cannot readily inspect the hosted
state. In addition, hidden service operators remain responsible for the services and content
they publish, regardless of whether hosting is delegated to a TEE-hosted vault node.

For vault operators, legal exposure is jurisdiction-dependent and may hinge on how local
law treats third-party hosting, infrastructure provision, and duties arising from notice or
investigation. Thus, even though VaulTor is designed so that the vault cannot inspect the
encrypted hidden service content state, prospective vault operators should treat legal risk
as non-negligible and evaluate deployability under applicable local law (e.g., jurisdictional
choice, operational policies, and whether participation is restricted to vetted deployments).

10.6 Incremental deployment:
The VaulTor architecture supports incremental deployment (albeit its strength is fully utilized
when there are many vaults present on Tor). Vaults can register their VCHS themselves to
an HSDir similar to how Hidden Services are currently already registered. This allows for a
slow, optional adoption of VaulTor.

The client does need to install a small extension (as discussed in Sec 7.4) that compares
Psrv (or its hash) with the one advertised by the HS provider but this is a trivial add-on and
does not affect traditional HSes.

10.7 Multiple Vaults:
An HS provider may commission multiple vaults to hold their data. To this end, they may
download the Ssrv and the x509 certificate from the HP of one vault and upload it to an HP
they have hosted on another vault. As clients use the certificate hash provided by an HS to
validate its identity (as described in Sec 7.4), they can be certain they are being served by
the same HS provider even if the onion URL of the HS is different. This will add redundancy
and fault tolerance to the HS provider’s content: if one vault becomes inactive, the other
vaults can continue to serve content.

10.8 Strengthening client data privacy
In the VaulTor architecture, the host program is present inside a TEE and its measurement
(see Sec 2.1) is available to the client (in addition to the HS provider). The HS provider
may elect to make the code itself available to the client, allowing the client to inspect this
code. If the code is simple (for example, the code only stores and serves content to password
authenticated requests), then the client can upload private data to the server without having
to trust the HS provider as is necessary in the current Tor architecture.

10.9 Attacks against TEEs:
A wide variety of side-channel attacks exist that can target TEEs [68, 64, 61, 27, 54]. These
attacks aim to discern secrets contained inside the TEE, such as private keys, through
various means such as leveraging page faults. Vendors are prompt in mitigating side-channel
attacks [10] as the community uncovers those. Considering the research and development
that focuses on mitigating side-channel attacks [66, 43, 47, 37], architectural designs discount
such attacks from their threat models [63, 11, 50]. We also follow take the same course of
action (Sec 6).
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10.10 Advancements/variations in TEE technology:
Although our current implementation utilizes Intel-SGX, VaulTor is a generic solution that
could theoretically support any TEE service. As newer TEE services (such as Intel-TDX [3])
emerge and improve, the strength and flexibility of VaulTor improve as well. In the future, a
diverse set of vaults utilizing differing TEE technologies could be built and tested. Other
promising implementations of TEEs are also being proposed [18, 26, 29, 34, 48]. We believe
that TEEs will become increasingly resistant to side-channel attacks.

11 Conclusion

We present VaulTor as an architectural solution that leverages TEE technology to reduce
the threat of deanonymization attacks against HS providers on the Tor network. To this end,
VaulTor introduces a new actor: the vault, which serves content on the HS provider’s behalf.
We show that VaulTor prevents several HS deanonymization attacks by utilizing the vault,
whilst preserving the same level of client anonymity as in the current architecture. This is
achieved without any noticeable performance degradation experienced by the client. We also
argue that vaults have the same security guarantees as HS providers in the conventional Tor
architecture.
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