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—— Abstract
Mobile application performance is often bottlenecked by cellular links with rapid bandwidth fluc-

tuations. We show that radio KPIs from the device chipset can precisely and promptly measure
available cellular bandwidth. Building on this, we propose BISCAY, a practical KPI-driven congestion
control for mobile networks. BiscAy leverages OPENDIAG, an in-kernel, real-time KPI extractor we
introduce along with a KPI-based bandwidth estimator to adjust the congestion window, utilizing
available bandwidth while minimizing delay. We implement BiscAy and OPENDIAG on unrooted
Android 5G phones. Across trace-driven emulations and real-world 4G/5G experiments, Biscay
outperforms state-of-the-art CCAs (e.g., BBR, CUBIC), typically reducing average and tail delay by
>90% while matching or improving throughput. These gains stem from OpenDiag’s 100x finer
on-device KPI granularity than existing alternatives like Mobilelnsight.
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1 Introduction

Mobile cellular networks enable ubiquitous, on-the-move connectivity for end devices. Global
mobile subscriptions already exceed 8 billion, dwarfing fixed broadband, with networks
rapidly shifting from 4G to 5G [39]. Despite this rollout, measurement studies show 5G still
falls short of the high throughput and low delay required by many applications [54, 43, 53].
Beyond traditionally downstream-dominated traffic, next-generation applications generate
substantial uplink demand [53]. Cloud gaming, AR/VR, video conferencing, backup services,
and live HD streaming require significant real-time uplink capacity, making robust uplink
performance essential for user experience.

Our focus is high-performance transport for mobile networks, specifically improving
congestion control (CC). CC must maximize delivered throughput while minimizing delay; we
capture this with the power metric (throughput/delay) and the classic rule “keep the pipe just
full, but no fuller” via the path BDP [57]. Tracking this operating point in mobile settings is
difficult because (1) the cellular link is typically the bottleneck [101, 60, 99, 105, 97], and

(2) the available cellular bandwidth fluctuates rapidly due to wireless channel dynamics,
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Figure 1 Measured trace of end-to-end and 5G link available bandwidth fluctuations while moving
with a commodity 5G phone.

contention, mobility, and handovers [101, 60, 45, 105, 97]. Figure 1 illustrates both challenges
using a trace from our dataset (commodity phone on a moving 5G connection; details in
§6.3.1), highlighting the need for precise, timely knowledge of available bandwidth on the
cellular segment.

Prior CC work for mobile networks (§3.1) falls into two broad categories: (i) estim-
ation/prediction of available bandwidth (e.g., Sprout [97], PROTEUS [103], Verus [105],
PropRate [62], ExLL [74]); and (ii) approaches requiring network support (e.g., ABC [45],
DChannel [81]) or external sniffers (e.g., PBE-CC [101]). The former are inherently limited
by estimation error, and the latter face deployability barriers.

Our key insight is that directly measuring available cellular bandwidth is better than
estimating it, and routinely collected radio KPIs inside the device chipset can be leveraged
for this measurement at no additional probing cost. Exploiting this raises four challenges: (1)
selecting relevant KPIs and mapping them to available bandwidth; (2) extracting normally
inaccessible KPIs efficiently and in real time; (3) integrating KPI-driven bandwidth into
congestion window adaptation; and (4) achieving all of the above in a practical, deployable
design.

We propose BISCAY, a practical KPI-driven CC system that addresses these challenges.
From 3GPP procedures [16], we identify KPIs (e.g., transport block size, number of physical
resource blocks) that let the device determine available bandwidth on the cellular link. At
the core of BisCAY is OPENDIAG, an in-kernel tool that uses the integrated Diag interface
to extract arbitrary KPI sets in real time, enabling fine-grained bandwidth computation.
BiscAY then uses this cellular bandwidth to set the congestion window; if the bottleneck lies
in the wired segment (less common), BISCAY falls back to end-to-end bandwidth estimation.
We implement BiscAy and OPENDIAG on Android devices and expose a user-space API
via libOD. Unlike existing tools (e.g., Mobilelnsight [63, 64, 92]), OPENDIAG provides two
orders of magnitude finer KPI timescales without requiring root access. Combined with its
device-centric design, BISCAY is practical and readily deployable. BiscAy-related code, tools,
and scripts are available on Github !.

We evaluate BISCAY extensively against a wide range of CCAs using: (1) the Pantheon
emulator [104] driven by numerous traces collected on commodity 5G phones augmented
with OPENDIAG (each trace includes backlogged UDP throughput and companion KPIs);
and (2) real-world experiments on private and public 5G networks comparing BISCAY to
BBR [34] and CUBIC [48]. Table 1 summarizes key results (details in §6). Overall, Biscay
significantly reduces average and tail delays (at least 50%, typically over 90%) while matching

! https://github.com/netsys-edinburgh/BISCAY
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CCA Tput  Avg Delay Tail Delay ‘ CCA Tput  Avg Delay Tail Delay
BBR 1.03x 58.51% 41.18% PCC 1.84x 94.97% 95.01%
CUBIC 0.96 x 98.74% 99.03% Sprout  1.01x 80.69% 71.59%
Copa 1.01x 96.41% 96.48% Verus 1.56x 90.83% 97.28%
LEDBAT 1.0x 92.9% 88.55% Vivace 1.72X 93.03% 94.05%

Table 1 Summary of performance gains with BISCAY (in terms of throughput increase factor and
percentage of average/tail latency reduction) relative to existing CCAs.

or improving throughput. We also compare OPENDIAG to Mobilelnsight [92] and the Android
Telephony API [44], showing a 100x improvement in KPI granularity.
In summary, we make the following key contributions:

e Biscay: a device-centric cellular CC design that leverages radio KPIs from the mobile
chipset (§4).

e OpenDiag: a real-time radio KPI extraction tool for commodity mobile devices that does
not need rooting and allows arbitrary set of radio KPIs to be obtained from the radio
modem at 10ms time granularity, that is an 100x improvement over common alternatives
like MobileInsight [92] and Android Telephony API [44] (§4.2.3).

e Evaluation: in-kernel implementations on Android 5G phones (§5) and extensive emulation
and real-world experiments demonstrating large delay reductions with comparable or better
throughput (§6).

2 Background

This section provides a brief overview of the 5G networking stack on mobile devices and

gives an overview of available on-device channels for communication with the radio modem.

Mobile Network Stack: Both 4G and 5G stacks are quite similar and reside under the IP
layer in the TCP/IP model and provide similar functionality. For the sake of concreteness,
however, we will focus on the 5G mobile network stack (illustrated in Figure 2).

Starting from the bottom, the Physical layer (PHY) [14] provides a transport channel
to the upper layers and transfers higher layer information over the air interface to the 5G
base station (gNB). Immediately above, the Medium Access Control layer (MAC) [11] serves
as an interface between logical channels and the transport channel at PHY providing data
transfer and radio resource allocation services to upper layers. The Radio Link Control layer
(RLC) [17] sits on top of the MAC and is responsible for the transfer of upper layer Protocol
Data Units (PDUs), error correction, concatenation, segmentation, reordering, duplicate
detection and reassembly. Packet Data Convergence Protocol layer (PDCP) [13], the layer on
top of RLC, is responsible for transferring user and control plane data, header compression,
and ciphering/integrity protection. In between the PDCP and the IP layers, the Service Data
Adaptation Protocol (SDAP) layer [19], a new addition relative to 4G, is in charge of the user
plane traffic’s quality of service. On the other hand, for the control plane, the Radio Resource
Control layer (RRC) [18] configures the user and control planes according to the network
state and is in control of the connection establishment /release, system information broadcast,
radio bearer establishment/reconfiguration/release, mobility procedures (handovers) and
paging notification. Finally, over the RRC layer, the Non-Access-Stratum layer (NAS) [12] is
in charge of the session management procedures (authentication, security control, mobility,
etc.) to establish and maintain IP connectivity between the device (UE) and AMF in the
mobile core. The data communication between the device and remote endpoint happens via
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a tunnel to the UPF in the 5G core.

Communication with the Radio Modem: As pointed out in [63], the radio modem in a
mobile device comes with a debug/diagnosis channel [67, 10, 76, 27, 38] that is primarily meant
for Original Equipment Manufacturers (OEMs) to perform advanced baseband configurations
and diagnostics. Here we focus on Qualcomm (Snapdragon series) modems given that they
are the most common radio chipset in 5G devices. The diagnostic channel architecture in
Qualcomm modems can be generalized to other manufacturers to a large extent. Every
modern Qualcomm system on a chip (SOC) contains two different processing units: CPU and
DSP. The CPU (typically an ARM based architecture) runs a general-purpose OS (GPOS)
such as Android or iOS, whereas the DSP or modem (usually Hexagon based architecture [7])
runs a real-time OS (RTOS) such as Qualcomm QuRT RTOS. The GPOS and the RTOS
are completely isolated from each other, and they can only interact with each other through
a standard communication channel. This means that any process running in the GPOS
(or even the GPOS kernel itself) cannot access anything within the RTOS or vice versa
unless the standard communication channel is used. In Android, this channel is called
Radio Interface Layer (RIL) [9], whose use is transparent to the user. The RIL defines a
generic interface that applications (and even Android itself) use to interact with the modem.
Some examples of the functions provided by the RIL are starting a call, terminating a call,
introducing the SIM card pin and getting the coverage level. Given that RIL is a generic
and modem agnostic interface, each modem manufacturer must provide a translation layer
between the RIL and the specific modem that is referred to as the vendor-RIL, as illustrated
in Figure 3. Qualcomm’s vendor-RIL uses the standard RIL interface on one side and on
the other side QMI (Qualcomm MSM Interface) [8] — a proprietary protocol used to interact
with Qualcomm modems. From the perspective of radio KPI data collection, RIL offers only
a small subset and that too a coarse time granularity (2-3s) via the Telephony API (a set of
libraries built on top of RIL) [44].

Qualcomm modems additionally provide a side-channel called Diag (diag is also the name
of the protocol) [72] for diagnostics and control. Unlike the RIL, diag was designed to provide
all sorts of debug information and control capabilities so that manufacturers can use it to
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Figure 3 Architectures of RIL [9] (top) and DIAG [40] (bottom).

diagnose the modem using dedicated tools such as QXDM [77]. The only way of accessing
the diag functionality is through the Diag kernel module (diagchar), an open-source kernel
module provided by Qualcomm that acts as a shim between an application and the chipset,
and exposes only the basic functionality (read, write and minimum protocol configuration).
In practice, the Diag module is just a proxy that simplifies the access to the chipset. The
bottom part of Figure 3 shows a schematic of the DIAG architecture. The application
must implement the undocumented and proprietary diag protocol logic to communicate
effectively with the chipset. Broadly speaking, the diag protocol offers two sets of features:
gathering features (read and parse debug messages coming from the chip) and control features
(modifying the chip’s behavior and state). The former set of features have been partially
reverse engineered and implemented by some KPI collection/measurement tools. The latter
set of features have not previously been exploited by any measurement tool but enable an
application to modify the behavior and state of the chip (change internal variables or disable
the internal message buffering).

Carrier aggregation: Carrier aggregation (CA) [20] is a technique introduced in LTE-
Advanced and remains an integral part of 5G for increasing the per-user bandwidth and the
user throughput via aggregation of radio resources in the form of frequency blocks (called
component carriers) from multiple cells and assigning them to the UE. CA is used when
the amount of data to be transferred for the UE is insufficient with the resources from one
cell, Primary Component Carrier (PCC), which is when the base station activates new cells
or Secondary Component Carriers (SCC) to cope with that additional load. Though the
SCCs are added and removed as needed, the PCC only changes at handover; the UE relies
on the PCC for the RRC connection and to send/receive NAS information (e.g., security
parameters). CA scenarios are common in dense urban environments where the number of
available cells is higher.

3 Related Work

3.1 Congestion Control Mechanisms

End-to-end approaches. Loss-based CCAs (NewReno [47], CUBIC [48]) reduce cwnd on
loss and react too slowly to fast cellular fluctuations, building queues and delay. Delay-based
schemes (Vegas [31], FastTCP [95], Copa [29], LEDBAT [82]) operate at RTT timescales
and miss sub-RTT air-interface variations, leading to inefficient utilization. Hybrid designs
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(BBR [34], TCP-Illinois [65], Compound [89]) improve utilization but exhibit issues such as
RTT unfairness, TCP unfriendliness, and robustness limits. Learning-based CCAs (PCP [26],
PCC [36], PCC-Vivace [37], Remy [96], Indigo [104], Orca [23]) incur substantial training
cost and generalize poorly across heterogeneous networks, complicating deployment.

Cellular-oriented approaches. Several works target cellular links explicitly (Sprout [97],
PROTEUS [103], Verus [105], PropRate [62], ExLL [74], ABC [45], PBE-CC [101], DChan-
nel [81]). Black-box estimators differ in how they track dynamics: Sprout/PROTEUS
forecast short-term capacity; PropRate continuously probes; Verus uses a BBR-like delay
signal tailored to cellular links; ExLL monitors packet arrival patterns at the receiver.
mBBR [106] refines BBR for high-loss, rate-limited mobile links. LDRP [91] reduces uplink
latency via application-layer dummy probing, duplicating transport-layer functions (e.g.,
BBR) and adding network/energy overheads. Other proposals assume infrastructure or
hardware support such as CQIC [66], ABC [46, 45], XRC [55], and DChannel [81] rely on
cross-layer base-station information (akin to AQM [70]), requiring changes at both BS and UE,
hindering deployment. Sniffer-based designs (piStream [98], PBE-CC [101]) extract low-layer
information using external SDRs [87, 3, 58, 33, 41, 100]; PBE-CC’s reliance on non-3GPP
functionality [21, 16, 15] and brute-force recovery makes it impractical for energy-constrained
devices.

Compared to the existing solutions, 1) BIsCAY can adapt to the frequent and unpredictable
fluctuations of the wireless bandwidth unlike end-to-end approaches which rely on RTT,
resulting in fewer queue buildups and thus lower delays; 2) BISCAY provides significantly
more accurate bottleneck bandwidth estimate compared with the cellular-specific solutions
that treat the air interface as a black box, resulting in throughput maximization while
keeping the delays at a minimum; and 3) BISCAY’s device-centric design eliminates the need
for support from the routers on the path or external devices (such as sniffers), facilitating its
deployment and adoption.

3.2 On-Device Mobile Network Monitoring

Most commercial on-device mobile network monitoring tools function as trace-collector tools
(e.g., [77, 24, 52, 51]) and are designed for offline analysis, where the data processing happens
on a separate machine. Alternatively, commercial tools capable of online monitoring [75, 79,
85] are limited to on-device visualization of the data for service quality assessment or RF
troubleshooting during field testing. However, they lack the ability to forward the collected
data to another on-device consumer in real-time. In the open-source realm, some tools (e.g.,
[30, 71, 73]) dump in near-real-time basic information from some of the mobile layers for use
on an external machine connected to the phone.

Among on-device KPI extractors, Telephony API [44] and the minimal driver prototypes
of the Qualcomm Diag protocol [72] (e.g., [86, 42, 28, 68]) restrict KPI range and granularity
(also shown in §6). Mobilelnsight [63, 64, 92] can access chipset KPIs but requires root
(introducing vulnerabilities [90]). Furthermore, its online KPI extraction suffers from coarse
(1s) data granularity due to its original offline design [4], necessitating user extensions to its
mobile app [5] to be able to forward KPI data to other on-device consumers. It has been
used in CLAW [99] and PERCEIVE [60] for specific applications, yet its coarse sampling
limits control performance (§6). In contrast, OPENDIAG provides fine-grained (10 ms) on-
device, online radio KPI extraction without rooting, enabling effective cellular CC and other
KPI-driven applications.
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4 Design

We leverage ongoing KPI measurements from device radio chipsets to determine available
cellular link bandwidth in a timely manner and improve cellular congestion control. We first
outline the challenges, then present BiSCAY and its components, including the real-time KPI
extractor OPENDIAG.

4.1 Challenges

Cellular link bandwidth determination. The mobile device’s 4G/5G chipsets capture
many KPIs at millisecond granularity. Some like Channel Quality Indicator (CQI) are
vital for mobile network and base station functions (e.g., MAC resource scheduling), while
others aid in device-side monitoring and diagnostics (e.g., radio measurements for drive test
minimization [22]). Our primary challenge is to identify the specific subset of radio KPI
measurements from the device chipset that are important for calculating cellular link capacity
and available bandwidth.

Real-time radio KPI extraction. In the context of this work, where available cellular link
bandwidth is derived from low-level radio KPIs on devices, the age (time since measurement)
and granularity (measurement frequency) of these KPIs significantly impact the precision
of current bandwidth estimation. Fresh and finely-grained measurements are critical for
accuracy. However, as discussed in §3.2, existing on-device radio KPI monitoring tools do
not meet this requirement. Our second challenge is to solve this.

On-device radio KPI based congestion control. Apart from the above two challenges,
we need to identify how and when to use the cellular link bandwidth measurement information
from the congestion control perspective. Particularly when the cellular link is the bottleneck,
the challenge is incorporating the measured cellular link bandwidth value for congestion
control across multiple concurrently active flows.

Deployability. The ease of deployment of a congestion control (CC) design plays a key role
in its widespread acceptance and adoption. Currently, the only CC design that leverages
real-time radio KPIs requires bulky external hardware in the form of cellular sniffers [101]
plugged into a phone, rendering it impractical for deployment. Ideally, both the CC system
design and the radio KPI extraction framework should seamlessly operate on standard
devices, without burdening users or necessitating device rooting.

4.2 Biscay
4.2.1 System Overview

Figure 4 overviews BISCAY. OPENDIAG, the real-time KPI extraction layer, interfaces with
the Diag module to collect KPIs across the stack. BISCAY’s cellular bandwidth determination
layer uses these KPIs to compute available bandwidth. Together with end-to-end bandwidth
estimation, this feeds a bottleneck determination layer. The chosen bottleneck bandwidth is
combined with RTT (from the Linux TCP stack) to set cwnd in the kernel. All layers except
OPENDIAG constitute the BiscAy CC module.

4.2.2 Cellular link bandwidth determination layer

Unlike prior work that correlates/predicts bandwidth from raw KPIs [60, 99, 83, 84, 101],
we replicate the modem’s 3GPP procedures to compute available bandwidth, which is more
accurate and robust (§6). We focus on 5G (4G is analogous).
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Figure 4 BISCAY congestion control system overview.

The 3GPP specification TS 38.306 - 4.1.2 [1] defines peak UE throughput from inputs such
as carrier aggregation, MIMO layers, modulation, and resource block allocation. However,
this formula does not accurately represent the current available bandwidth, it estimates
achievable throughput under ideal conditions. 3GPP procedures [16] describe how UEs
derive uplink bandwidth using Transport Block Size (TBS) granted via Downlink Control
Information (DCI). In 5G, TBS index is computed per TTI (TS 38.214 [16]) from parameters
such as MCS, redundancy version, and scheduled OFDM symbols. In 4G the TBS index is
precomputed from MCS index. Given the TBS index and number of PRBs, throughput is
obtained via pre-defined tables and multiplied by the number of antennas (MIMO). Carrier
aggregation sums per-carrier values. In practice, DCI (via the diagnostic channel) already
exposes TBS index and PRBs, eliding the first phase. We compute bandwidth per TTI:

Carriers
bw = Z (tputTable[PRB(c), TBS(c)] * numAntennas) (1)

c=1

Alternatively, the MAC layer reports a diagnostic summary of granted bytes and its
utilization. This aggregates carriers/MIMO/standards (4G, 4G+, 5G NSA/SA) at a coarser
100 ms granularity. We evaluate both the granted-bytes KPI and the 3GPP-based calculation
from a CC perspective in §6. DCT also carries downlink grants (TBS, PRBs). Using Eq. 1
with the 3GPP downlink tables [1] yields available downlink bandwidth.

4.2.3 OpenDiag: Real-time radio KPI extraction layer

Online bandwidth control requires KPIs immediately after chipset generation. FExisting
designs (Mobilelnsight [63] in Fig. 5) lack real-time capability due to three limitations:

e Inter-process communication. Mobilelnsight is a user-space application that is made up of
two processes communicating via a pipe: diag_revealer (a C application responsible for the
message collection) and MobileInsight App (a Java application with a Python interpreter
on top responsible for the message processing). The data (diag messages containing KPIs)
initially traverse the Diag module which interfaces to the modem diagnostic channel and
acts as a data forwarder. In addition to these three entities that are part of the processing
chain, Mobilelnsight must be extended in order to forward the processed KPIs to a consumer
application (CC in our case), creating another step in the chain.

e Processing time. Mobilelnsight’s packet processing framework parses and extracts a wide
range of KPIs from packets. This can vary from a few tens of KPIs in small packets to
several hundred or even a thousand KPIs in larger ones. However, for specific applications
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Figure 5 Mobilelnsight vs OPENDIAG architecture.

like ours, this design becomes inefficient, as it necessitates waiting for the processing of all
KPIs in selected packets before retrieving the required ones. This is particularly problematic
when only a handful of KPIs are necessary.

Message granularity. Mobilelnsight employs the Diag module to receive packets from the
modem. However, this approach lacks insight into the modem’s internal workings. Notably,
it does not account for the modem’s aggressive buffering mechanism, resulting in the release
of message batches roughly every second, as demonstrated in §6.

OPENDIAG enables real-time KPI retrieval (Fig. 5) via:

Tightly Coupled Architecture. In order to minimize the inter-process communication, OPEN-
Di1AG tightly integrates with the Diag module (and its equivalent in modern Android versions).
This design choice not only eliminates intermediaries like MobileInsight’s diag_ revealer but
also grants access to private Diag module functionality (through exported symbols and by-
passing non-essential features) that cannot be accessed as a user. This compact architecture
design mandates that OPENDIAG must run within the kernel. OPENDIAG is shipped as
a kernel module, so the kernel needs no modifications. This in-kernel design avoids the
data from crossing the kernel-user boundary twice before reaching the CC module, generally
deployed as a kernel module as well. Notably, eBPF-based strategies [2] prove ineffective in
this context, the diagnosis logic resides in the modem and eBPF codelets cannot hook into
external hardware.

Efficient Processing Framework. Unlike in Mobilelnsight, where to retrieve one KPI, all the
KPIs within that packet have to be processed due to a packet-focused processing framework,
OPENDIAG employs a KPI-focused strategy in its processing framework. This approach
stipulates that the smallest parsing unit is a single KPI (in contrast to a full packet), enabling
the parsing of individual KPIs. The processing efficiency of our KPI-focused methodology is
detailed in §6.

Establishing Control Channel. Due to its privileged access to Diag module’s internal func-
tionality (through the in-kernel architecture), OPENDIAG is able to reach and manipulate
modem internals inaccessible from user space. This establishes a control channel with the
modem, serving the purpose of coordinating when to drain the internal buffer where the
diagnosis messages get queued, effectively removing a key root cause of coarse granularity
experienced by prior designs. Moreover, this control channel directs the chipset to offload
the minimal necessary packet subset for extracting the user-defined KPIs.

15:9
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4.2.4 Radio KPI based congestion control

Accurate bottleneck bandwidth estimation is central to CC. BISCAY is a radio-KPI-based
TCP CCA that determines cellular bandwidth in real time via OPENDIAG and integrates
with TCP (Fig. 4). OPENDIAG supplies KPIs; the CC layer converts KPIs to throughput
(§4.2.2) and, together with an RTT estimate, sets cwnd.

Bottleneck localization. BISCAY continually maintains both an end-to-end bandwidth
estimate (e.g., packet sending rate, ACK-based, or loss-based) and a wireless-link estimate
via KPIs. When the cellular link is the bottleneck, the KPI-derived bandwidth is < the
end-to-end estimate; cwnd matches the cellular bandwidth, maximizing throughput while
avoiding edge queue buildup. If the end-to-end estimate is lower, the bottleneck lies in
the wired segment; BIscay falls back to any wired-specific CCA during that interval. The
overhead of tracking two estimates and switching modes is negligible (few bytes of state and
simple arithmetic).

Inter-flow fairness. Cellular base stations maintain per-UE deep buffers (no inter-user
unfairness), but flows from the same UE share those buffers, creating an inter-flow fairness
problem. Each flow runs its own CCA instance using only per-flow context. BISCAY takes
a device-level view: it tracks the number of active flows and apportions the KPI-derived
bandwidth across them. The split policy is implementation-defined; standard scheduling
algorithms from the literature can be used.

Downlink. Bandwidth determination for the cellular downlink follows §4.2.2. To relay
this to the remote sender, we leverage TCP’s built-in flow control (outside the congestion
control layer) to throttle the sender to the cellular link bandwidth, avoiding queue buildup at
the UE. BisCAY modifies only the UE; using the relayed bandwidth to increase the sender’s
rate would require sender-side TCP changes. Prior downlink-focused proposals adopt this
approach [101, 97]. Without a downlink bottleneck, ramp-up follows standard behavior.

5 Implementation

The implementation of BISCAY has two core components: the KPI extraction layer (OPEN-
Di1ag) and the Biscay CC module. We implemented both these components as kernel
modules (~ 2500 lines of C code). We have developed multiple versions of OPENDIAG for
different Android versions. At the time of writing, OPENDIAG has been tested and validated
on Android 11, 12, 13, and 14. But given our extensive experience working with Android 11,
our description and experiments are based on that version; it runs on top of the Linux Kernel
4.15 (default for Android 11 on Google Pixel 5). Besides, OPENDIAG has also been validated
on multiple Android devices and external modems such as Nexus 6P, Samsung Galaxy Note 4,
OnePlus Nord 5G, OnePlus Nord N30, Nothing Phone 2, and Quectel modems. OPENDIAG
has also been used commercially for over a year to collect cellular data across 20 different
countries spanning America, Europe and Asia. Additionally, for the sake of simplicity, we
package these as part of a Custom Android update, facilitating deployment on non-rooted
devices via a manual update. The method for manually updating the OS using a custom
image varies across device vendors but in general, this can be done from the Android settings,
through an App provided by the vendor or using Android’s Fastboot mode.

KPI extraction layer. Biscay’s KPI extraction layer is named OPENDIAG and consists
of a multi-threaded kernel module. The first kernel thread is responsible for obtaining and
processing data received from the Diag module. This thread handles packet parsing and
extracts any KPIs that the CC specifies. The second kernel thread is responsible for the
control channel. It is configured to periodically instruct the modem to drain the internal
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buffer where the diagnosis messages are queued. The control thread flushes the internal
buffer every 1ms — this frequency was chosen to be smaller than the most frequent diagnostic
message, which is generated every 10ms.

Although BiscAy will use OPENDIAG from within the kernel, OPENDIAG offers a
subscription-based API for both kernel and user space consumers. This API is used by
the CC layer (the consumer) to specify a list of KPIs that OPENDIAG must extract and
forward in real-time. The KPI forwarding is done through a shared memory channel in order
to avoid excessive message passing within the kernel. This channel is realized through a
shared buffer (memory-mapped to the user space application’s virtual address space in case
of accessing it from user space) that is allocated by OPENDIAG based on the number of
KPIs specified by the consumer. To avoid unnecessary busy waits (spinlocks), OPENDIAG
implements triple buffering over the shared-memory region so that the consumer can read
KPI asynchronously without causing any race condition. To facilitate user-space interaction
(such as user-space TCP or QUIC), we implement libOD. libOD exposes a simple POSIX-style
API for applications to access radio KPI readings. libOD maintains a set of supported KPIs
that can be easily extended to support obtaining any data from any diag message. At the
time of writing, libOD supports the majority of relevant KPIs from PHY and MAC layers,
the entire RRC and NAS layers (including ASN.1 and L3 Tabular decoding) and a subset
of RLC and PDCP layers. Importantly, libOD API has been designed to be compatible
with Mobilelnsight parsers, enabling them to be deployed on top of OPENDIAG if needed
even though the set of KPIs supported by OPENDIAG is larger than what MobileInsight
offers. Furthermore, the accuracy of the measurements performed with OPENDIAG has been
validated against state-of-the-art commercial tools such as Qualcomm’s QXDM [77] and
Keysight’s Nemo Handy [52].

Biscay CC module. BISCAY has been developed from scratch as an independent CC module
only borrowing the pluggable features described in §4 (end-to-end bandwidth estimation and
fallback mechanism) from an existing CCA in order to reduce development time. We leverage
BBR [34] to implement BIsCAY’s pluggable functionality. In particular, we leverage BBR’s
end-to-end bottleneck bandwidth estimation as part of bottleneck bandwidth estimation
as well as vanilla BBR for the fallback mechanism (when the bottleneck switches to the
wired segment, vanilla BBR will be used). Our decision is to use BBR’s built-in end-to-end
bandwidth estimation and fallback is based on the fact that both existing works [101, 102]
and our own evaluations show the superior performance of BBR compared to other end-to-
end approaches in the wired segment. Other recent works [35, 106] also acknowledge this
and leverage BBR as the underlying base framework. These functionalities are taken from
the BBR version integrated within the Linux kernel 4.15. A detailed comparison between
Biscay’s code and BBR’s code can be found in §A.2 along with a description of BISCAY’s
internals.

Our implementation complies with the Linux kernel’s TCP machinery and gets loaded
in the kernel as a CC callback which gets invoked when certain congestion events (e.g. on
receiving an ACK, timeouts, duplicate ACKs, or Explicit Congestion Notification) trigger
it. BiscAy CC module interacts with OPENDIAG using the latter’s API and converts the
KPIs into available bandwidth in Mbit/s. Subsequently, this bandwidth is converted into
the kernel’s native format (packets/ps) and then translated into a congestion window length
by multiplying it by the estimated round-trip time (RTT). The RTT is obtained directly
from the kernel’s TCP machinery, which maintains a continuously updated RTT estimate
based on per-ACK measurements. We leverage the existing BBR formulation to combine the
kernel’s bandwidth representation with the estimated RTT, thereby deriving the congestion
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window (cwnd) used for transmission. In a downlink scenario, the receiver-advertised window
is computed in the same way, in which the downlink KPI-based bandwidth is combined with
the estimated RTT (also obtained from the TCP machinery) using the identical formulation.
Biscay lists the active flows, identifying each flow by the 4-tuple corresponding with source
IP, destination IP, source port, and destination port. In order to achieve active flow tracking,
BIscAY overwrites, using a transparent shim, some callbacks of the kernel’s socket structure
to get notified when any operation is performed in all system’s sockets. Given the nature of
TCP flows in Android [78] (over 80% of the TCP flows have a lifespan over 10 seconds), we
have opted for a bandwidth distribution policy where every flow receive an equal share of the
available cellular bandwidth targeting a fair distribution of the available resources. However,
we acknowledge and discuss in §A.2 that some scenarios could be negatively affected by
this policy and propose alternative scheduling policies that would perform better in such
scenarios.

Despite using functionality from BBR, we further discuss how to leverage/integrate other
CCAs features within BisCAY in §A.2 inspired by how BBR v2/v3 leverages extra signals
(ECN and packet loss) from other CCAs [93] to complement its congestion window calculation
method.

In addition to this Android implementation, we have also implemented an offline version
of BIscAy, for evaluations with the Pantheon emulator [104]. Given that Pantheon can only
be executed on a computer (we used Ubuntu 18) and OPENDIAG cannot run there (there is
no modem and Qualcomm drivers), we implemented a trace-based version of BISCAY that
takes a bandwidth trace generated from KPIs and replays it within Pantheon, effectively
mimicking what would happen in the real world within the device.

6 Evaluation

We conduct a comprehensive evaluation of BISCAY. First, we evaluate OPENDIAG, the KPI
extraction layer used in BISCAY in isolation, looking at three key parameters: granularity,
performance and battery consumption. Then, we evaluate the accuracy of two bandwidth
determination methods proposed for BIscAy, identifying the optimal granularity. Finally, we
compare BiscAy with 10 other CCAs under different mobility and workload scenarios. All
our experiments are conducted in networks with 4G and 5G coverage.

6.1 Biscay’'s KPI extraction layer

In this section, we discuss the key performance features of OPENDIAG, our KPI extraction
layer that plays a crucial role in the bandwidth determination accuracy. All the OPENDIAG
related experiments shown in this section have been conducted over commercial cellular
networks.

Granularity. Granularity, is the frequency at which packets are received from the chipset,
is a key feature that enables real-time data collection. Having a fine granularity means that
you can extract samples of a given KPI at any moment in time more accurately. Figure 6a
shows a comparison between six different collection tools (Nemo Handy [52], Telephony API
[44], MobileInsight [63], QualiPoc [79], R&S TSMAG6 [80] and OPENDIAG) and the finest
granularity at which the chipset can report a given KPI which is the ground truth. For
this experiment, we chose Reference Signal Received Power (RSRP) as the extracted KPI.
RSRP is a standard KPI used in multiple works, and it is one of the KPIs present in the
most frequent packet generated by the chipset through the diag interface (LTE Serving Cell
Measurement Response packet).
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Figure 6 a) Granularity of different tools vs chipset (ground truth). b) Packet processing time
of OPENDIAG vs Mobilelnsight as a function of subscribed packets. ¢) Battery cost over time on
COTS UE for Screen, OPENDIAG and Mobilelnsight; both recording the required KPIs.

In Figure 6a, granularity is reported as the time between samples in ms. While the
minimum packet granularity offered by commercial [52, 79, 80], standard [44] and open source
solutions [63] is in the order of 1000ms, OPENDIAG is able to retrieve packets from the chipset
almost every 10.9ms, a 100x improvement over all the alternative tools. Despite it’s in-kernel
design, the main reason behind such an improvement is the use of the control channel of
OPENDIAG that forces the chipset to drain the packets of the modem’s internal buffer every
ms. A similar improvement (95x) has been obtained using a user-space version of OPENDIAG,
which rules out the kernel factor as the main reason for the improvement. The overhead
created by the message gathering and parsing processes generates a 9% overhead over the
ground truth with 10ms granularity. Interestingly, if the logs generated by Mobilelnsight
are analyzed, the reported granularity matches the ground truth. However, this alignment
is deceiving due to Mobilelnsight’s time mechanism which uses the timestamp that comes
in the header of each packet (the time at which the chipset created that packet) as the
packet timestamp rather than the time at which the packet is received by the application. In
practice, if Mobilelnsight is used and the time at which the application receives a packet
is recorded, we will observe that a batch of packets is received at a given time due to the
chipset’s internal buffering. Roughly one second later, another batch of packets is received
by the application, comprising those generated during that particular second. Extending
this behavior to the value of a given KPI, we will observe that the value of the KPI remains
unchanged for a second and, when the batch of packets is received and parsed, its value
will change several times within a period of a few nanoseconds. In practice, this is seen as
one-second granularity.

Processing time. Besides the granularity, the other key factor that prevents us from
using Mobilelnsight as the KPI extraction layer is the processing performance rooted in its
multi-layer design and inefficient processing pipeline.

In Figure 6b, we measure how long each packet spends in the processing pipeline of
OPENDIAG and Mobilelnsight. This is the time between the packet’s arrival in the processing
pipeline and the time it has been dispatched and is available for the consumer. Even
though BISCAY only uses a few KPIs, we conducted a comprehensive evaluation where we
extract one KPI for every packet that we are subscribed to while we increase the number
of packets. Please note that each packet type might contain multiple KPIs. Due to the
limitations of Mobilelnsight’s data forwarding to a third-party application, we implemented
a dummy consumer within itself (OPENDIAG’s consumer was another application, incurring
extra time to forward the KPIs). From the numbers shown in Figure 6b, it is clear that
OPENDIAG’s design plays a significant role in terms of performance, i.e., timely KPI retrieval
with improvements in the order of 100 — 1000x. While OPENDIAG’s additional delay remains
in the order of tens of us, Mobilelnsight’s pipeline generates processing delays of hundreds of
ms, making it completely unusable to calculate the grants received in real-time every TTI
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Figure 7 Throughput comparison of granted KPIs and 3GPP formula with end-to-end ground
truth. Heatmap indicates the high Pearson correlation in the bandwidth determination methods.

(5G TTI is 0.5ms).

Energy efficiency. BIsCAY requires a KPI extraction layer to run in the background in
order to calculate the bandwidth. Due to this, we conduct an evaluation of the battery life
penalty that the user must pay for using OPENDIAG as a KPI extraction tool compared
to Mobilelnsight. We discover that the modem only generates debug packets when it is in
active mode. During the low-power mode, it generates very infrequent and periodic reports.
So, to keep the UE in active mode, we are generating a small but constant data plane traffic
using iperf3. Besides, for all our tests, we disabled Android’s adaptive battery and screen
brightness options to maintain consistent behavior between measurements.

Figure 6¢ shows the battery consumption over an hour of three different configurations:
Screen only (the screen remains on while ping was running in the background), OPENDIAG
(the screen was on and the required KPIs for BiscAay were recorded using OPENDIAG),
and Mobilelnsight (the required KPIs were recorded using Mobilelnsigth). For all three
configurations, the modem was in active mode. The results show that the battery degradation
of OPENDIAG compared with the baseline (Screen only) is negligible over the 60-minute
period. However, with Mobilelnsight, the battery consumption is more noticeable. We
mainly attribute this to the multi-layer design used by Mobilelnsight, which requires multiple
applications to run concurrently.

6.2 Biscay’s bandwidth determination

The design section (§4) introduces two different ways of determining the maximum available
bandwidth in the radio link: the simplified 3GPP throughput calculation and MAC layer
granted bytes. Theoretically, the main advantage of the former method comes with its
granularity (throughput can be determined at TTT granularity) with the trade-off of extracting
multiple KPIs such as PRBs, TBS index, and MIMO for all the serving cells if CA is enabled.
On the other hand, the advantage of using granted bytes comes from its simplicity (one
single KPI contains the resulting throughput after considering 4G/5G, CA, MIMO, etc.);
however, this KPI gets updated every 100ms.

Figure 7 shows a correlation study between the two throughput determination methods
defined by Biscay with the ground-truth throughput that corresponds with the throughput
received at the receiver side (server). We also include the raw KPIs used in similar works [60,
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Figure 8 Measurement of PRBs with OPENDIAG & Mobilelnsight.

99, 101] to estimate the bottleneck bandwidth (BisCAY uses those KPIs as indexes in the
pre-calculated 3GPP-defined tables). The correlation matrix clearly shows an extremely high
Pearson correlation (over 0.95) with the bottleneck bandwidth of the two methods defined
by BiscAy. Interestingly, even though it suffers from a 100ms granularity, the granted bytes
KPI can perform as well as the simplified 3GPP formula, suggesting that having extremely
fine granularity (TTI-granularity) might not be a decisive factor in CC. This experiment
also proves how simply using raw KPIs is not an accurate method to determine the radio
link throughput, with the correlation coeflicient barely reaching 0.75. A time-series plot of a
randomly picked scenario (mobility on-peak with CA enabled and 4G+5G) complements the
correlation matrix showing how similar to the ground truth both throughput determination

methods are. Please note the propagation delay has been removed for visualization purposes.
Figure 8 shows the time series of PRB allocations using both OPENDIAG and Mobilelnsight.

Note that PRB is a common KPI used in similar works [99, 60, 101]. Due to the differences
in update frequencies between these, we observe a clear distinction in the measured KPI
(PRB) time series. The less frequent updates with MobileInsight causes applications relying
on its measurements (e.g., PERCEIVE [60] or Claw [99]) to rely on outdated or less precise
estimates during intervals between the updates. In contrast, the fine granularity provided by
OPENDIAG leads to accurate measurements, enabling more effective and optimal utilization of
resources. The discrepancy between reported and actual real-time KPI data can significantly
impact the performance and efficacy of applications reliant on KPI based estimates.

The combination of the proposed bandwidth determination method’s accuracy (Figure 7)
and precise KPI measurements resulting from a finer granularity sampling (Figure 8) hints
towards optimal performance from transport layer point of view. Given this, we decided
to conduct an experiment to identify the effects of the data granularity on the transport

layer performance metrics (throughput, average and tail delay as of 95th percentile delay).

The results depicted in Figure 9, show the variation of end-to-end transport layer metrics
with the KPI sampling interval. We modified BISCAY to sample the air interface at a given
pre-defined frequency varied between 1 — 1500ms. The scenario shown in Figure 9 is the
same scenario shown in Figures 7 and 8. We added the results obtained by BBR as dashed
horizontal lines as reference.

The results show that while the throughput doesn’t decrease significantly as we increase
the sampling interval, both average and tail delays do increase with the KPI sampling
interval. This behavior implies that coarser sampling rates translate to BISCAY saturating

the channel, leading to queue buildups resulting in the same throughput and more delays.

Interestingly, this behavior is only noticeable for sampling rates larger than 100ms, which
explains why there is no difference between the throughput determination methods evaluated
in the correlation analysis. For sampling rates higher than 100ms, BISCAY starts to perform
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Figure 9 Effects of data sampling frequency on different transport metrics. The table on top
shows BISCAY’s performance using the average channel bandwidth.

like BBR and even underperforms BBR in both throughput and delay if the granularity
is coarse enough. Both, throughput and delay performance get degraded even more when
granularity beyond 1000ms is used (where all Mobilelnsight-based solutions [60, 99] operate).
We have added a table in Figure 9 (at top) that shows BisCAY’s performance using the
coarser sampling rate, sampling the channel just once.

If this experiment is repeated multiple times, the result will be the same as using the
average channel throughput in BiscAy. Consistent with the graph, the throughput remains
within a constant range while the tail delay and average delay grow drastically to 107ms and
27ms, respectively. These results and the required granularities highlight the need for a KPI
extraction layer like OPENDIAG given that the best granularity that can be obtained with
all the alternative solutions is 1000ms. It also validates that there is no significant difference
in transport performance between the two throughput determination methods besides the
implementation complexity. Therefore, our presented implementation uses the MAC layer
granted bytes KPI as a proxy to calculate the radio link bandwidth.

6.3 Congestion Control

We explore the performance of BISCAY in terms of throughput and delay (average and tail
delays) in commercial 4G and 5G networks. We compare BISCAY with 8 other state-of-the-
art CCAs. We deliberately picked a representative of each of the categories discussed in
the related work for the comparison: CUBIC [48] (loss-based), Copa [29] & LEDBAT [82]
(delay-based), BBR, [34] (hybrid), PCC [36] & Vivace [37] (learning-based), and Sprout [97]
& Verus [105] (wireless-aware). As an additional baseline, we include the Oracle, a CCA
that precisely knows the end-to-end bottleneck bandwidth at any given point in time and so
achieves the optimal performance (maximum throughput and minimum delay).

6.3.1 Real World Dataset Collection

To record the traces, we measured the uplink and downlink throughput across time by
saturating the link (both directions individually) with MTU-sized UDP packets. This is
because TCP cannot reliably saturate the channel as CC will kick in and reduce the sending
rate. This methodology is consistent with prior research [81, 97, 94]. We recorded the
throughput within the UE (Google Pixel 5, OnePlus Nord N30 and OnePlus Nord 10T) and
in the receiver server using tcpdump to ensure the correctness of our measurements. iperf3
was used within sender as a traffic generator. To extract the required KPIs, OPENDIAG
was running in parallel with tcpdump in the UE. Those KPIs are later introduced in a trace
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that is fed into Pantheon §6.3.2. This setup was used to collect multiple traces under four
different scenarios: mobility on-peak, mobility off-peak, static on-peak and static off-peak.
The on-peak label corresponds to a trace collected during busy hours (9 am to 6 pm), whereas
the off-peak label corresponds to traces collected between 10 pm and 2 am. We define a
scenario as mobile when the UE is moving between cells (labeled as mobility traces recorded
while walking, driving, bus, and train), and static corresponds to when the UE is not moving
between cells. All data collection occurred within an urban or campus area in major cities in
EU and US.

For a robust evaluation, we intentionally designed our data collection approach to
transition between 4G and 5G (NSA and SA) covered areas during each measurement. So,
every mobility trace includes both 4G and 5G data. Additionally, the mobility traces were
recorded with CA enabled, reflecting the effect of being served by multiple cells. We collected
multiple traces in different locations for the static case to reflect the diversity in network
conditions (4G/5G and single/multiple serving cells). Our methodology aimed to provide a
well-rounded view, ensuring the reliability and generality.

More information about the dataset, its characteristic and scenarios distribution can be
found in A.1

6.3.2 Testbed Configuration

The evaluation is primarily conducted on the Pantheon emulator [104], a network emulation
tool replaying pre-recorded network traces under emulated network conditions. Pantheon is
built on top of mahimahi [69], another emulation framework initially designed for HTTP-
based traffic. Both of these tools are widely used in the networking research community
[97, 104, 101, 29, 103]. Pantheon is deployed in the Powder platform [32, 6] using a 32-core
CPU machine with 64 GB of memory running Ubuntu 18. We generated 260 distinct
Pantheon traces from our measurement campaign. The reason behind using Pantheon for a
subset of the experiments is to ensure a fair evaluation where all CCAs are evaluated under
the exact same conditions since that cannot be guaranteed in the wild.

6.3.3 Single-flow performance

Figure 10 compares BiscAy with the eight CCAs mentioned above under four scenarios:
Mobility On-Peak, Mobility Off-Peak, Static On-Peak and Static Off-Peak. The x-axis of

the plot is reversed and the top right region is the best performing throughput-delay pair.

Each graph is the average from the respective set of traces. It is important to highlight
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Two flows Three flows
. Avg Tput Avg Delay Tail Delay | Avg Tput Avg Delay Tail Delay
COA | Scenario | iy (ms) (ms) (Mbit/s) (ms) (ms)
Mobile 12.76 5.625 7.64 8.5 5.78 7.54
Biscay
Static 8.89 10.92 13.62 5.91 10.04 12.79
BBR Mobile 12.59 7.68 9.73 8.42 7.91 10.05
Static 8.46 14.35 19.69 5.54 17.01 25.15
CUBIC Mobile 13.54 417.2 802.9 9.17 397.33 830.38
Static 9.13 768.9 1536 5.91 667.34 1450.80

Table 2 Performance comparison with two and three simultaneous flows using Biscay, BBR and
CUBIC.

that Pantheon will determine the emulator delay based on the provided trace, which is not
representative of the delay experienced during the measurement campaign. However, the
queue delay ratio amongst the different CCAs is trustworthy.

Across all the scenarios, CUBIC has the highest delays (average and tail) because its
cwnd gets reduced only when a loss is detected. Until then, the bottleneck queue builds
up, leading to increased delays before the packets are dropped. Copa and LEDBAT, both
delay-based, report throughputs similar to CUBIC and a fraction of CUBIC’s delays across
all the scenarios.

Sprout and Verus can significantly reduce the delay, given that they were specifically
designed for wireless access networks. Interestingly, Sprout matches CUBIC’s throughput,
but Verus is far from that, suggesting that the source of its low delay (although extremely
high tail delay) is due to not fully saturating the channel. Learning-based CCAs (PCC and
Vivace) show abnormal and inconsistent behavior across the different scenarios for both
throughput and delay, hinting that the models employed are overfitting in some scenarios.
BBR results outperform all the previously discussed CCAs in all the scenarios, both in terms
of delay (excluding overfits and abnormal results) and throughput. Finally, BISCAY is able to
maximize the channel usage, resulting in maximum throughput without paying delay penalties
attributed to its accurate bottleneck bandwidth determination method that calculates the
precise bandwidth in real-time and adjusts the sending rate accordingly. Moreover, among
all the CCAs evaluated, BISCAY is the closest to the Oracle, both in terms of throughput and
delay in all the scenarios. The reason for this lies in the fact that the different bandwidth
calculations used by the evaluated CCAs are inaccurate and coarse-grain approximations
of the bottleneck bandwidth. Finally, an interesting observation is that, on average, all the
evaluated CCAs seem to have better performance (more throughput and equal or lower
latency) in mobile scenarios as opposed to static, which is counterintuitive. That is just an
artifact of the dataset used; more on this in A.1

6.3.4 Multi-flow performance

For a comprehensive analysis of BISCAY’s performance, we conduct an experiment where
multiple flows are simultaneously active. From the experiments shown in Figure 10 and
summarized in Table 1, it can be seen that BBR is closest in performance to BISCAY across
all the scenarios. Additionally, CUBIC is the default CCA in the Linux operating system
and, therefore, in Android. We consider these two CCAs for the multi-flow evaluation.
The performance of the CCAs was evaluated under multi-flow conditions by simultaneously
running two and three flows (Table 2). The idea behind this evaluation is that an end device
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Figure 11 Per-flow throughput for Biscay, BBR and CUBIC. The shaded region indicates the

total channel bandwidth. Table 3: Jain’s fairness index of the different shadowed areas.

hardly runs a single flow and is configured with a given CCA, which gets applied at the OS
level. Therefore all the TCP sockets open in that system will use the predefined CCA unless
otherwise specified through the socket options, a practice rarely seen outside networking
laboratories. For simplicity’s sake, both tables contain the average results of On-Peak and
Off-Peak for the Mobile and Static scenarios.

We observe similar behavior to that of single-flow experiments in terms of throughput. All
three CCAs saturate the channel, and there is not much throughput difference between them.
However, not all of them maximize channel usage at the same cost. CUBIC saturates the
channel, which is reflected in high average and tail delays (up to 1.5s). BBR’s more precise
bottleneck bandwidth estimation leads to smaller queues at the bottleneck link, resulting
in lower average and tail delays. However, BBR design does not consider other in-device
flows when determining the cwnd of a given flow, which is reflected when flows compete for
bandwidth, resulting in queue buildups and higher delays (average and tail) increases. BBR
is more conservative and decreases the window whenever it detects queues being built. On
the other hand, BISCAY is aware of the number of active flows in the system, and it is able to
divide the grant received by the base station, which is meant for the entire device evenly
among the active flows avoiding the competition and limiting the queue buildup. Besides the
apparent decrease in throughput, the flow-aware design of BISCAY enables it to maintain
similar or even lower average and tail delays. This demonstrates the efficacy of BISCAY’s
design in managing multiple flows.

6.3.5 Fairness

Building on the multi-flow experiments where flows competed for bandwidth, we evaluated
how fair BISCAY is under such competition and compared it with BBR and CUBIC. Unlike
WiFi networks, where devices contend for access to the same physical resources, in mobile
networks, the base station manages the allocation of resources to the users. The base station’s
MAC scheduler makes resource allocation decisions based on the Scheduling Request received
from the UE and the observed channel quality. The scheduler then grants a portion of the
available resources to the UE through a Downlink Control Information (DCI) message. In
commercial RANs, scheduling algorithms typically use a proportional fair approach to ensure
fairness among users, as fairness is a crucial requirement in the RAN [56]. Additionally,
unlike WiF1i access points, where all users’ data is queued in the same buffer, base stations
have dedicated deep buffers for each UE. Therefore, inter-user fairness relies on the base
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Figure 12 Biscay falling back to BBR when the bottleneck changes to the wired segment

station scheduler, not the UEs. However, an inter-flow competition where multiple flows
compete for the uplink bandwidth within the UE is still an issue that CCAs have to deal
with.

Figure 11 shows the throughput achieved by three simultaneous flows when running
Biscay, BBR and CUBIC as time series. The shaded area in the background represents the
total channel bandwidth. In CUBIC, each flow strives to maximize its throughput, leading
to a suboptimal allocation of resources. In contrast, BBR is more conservative, focusing on
reducing delay, resulting in a more uniform distribution of the channel resources among active
flows compared to CUBIC. Finally, BiscAy is able to split the available bandwidth equally
among the existing flows, which is attributed to having a global view of the bandwidth
available for the UE, ensuring that every flow gets the same amount of bandwidth from the
total available. Additionally, we have calculated the fairness using Jain’s fairness index [50].
Figure 11 (right) includes the fairness index of the entire experiment and the two shaded areas
(Region 1 and Region 2). One of the limitations, as can be seen here, is that Jain’s index
uses the average throughput over the selected time period masking and hiding fine-grain
details. This is proven by the fact that the fairness index of the entire experiment is near
perfect for the three CCAs with an index equal to 1, while the time series show contradictory
behavior. The fairness indexes of the two shaded regions show that even though the three
CCA might look fair over long periods, BBR and CUBIC bandwidth distribution is unfair
(particularly harmful in short-duration communications such as web traffic).

6.3.6 Bottleneck detection

Finally, we assess BISCAY’s ability to detect changes in bottleneck location and its intended
behavior of falling back to a wired-specific CCA (our implementation uses BBR) when the
bottleneck shifts to the wired segment of the path. Although we did not encounter any
instances of wired-segment bottlenecks in our measurements and experiments on public
networks, we intentionally simulated this scenario. This involved manually limiting the
bandwidth of the wired segment to a value lower than that of the wireless link. As shown in
Figure 12, we realize this scenario by setting the end-to-end bandwidth to 5, 10, and 15 Mbps
at arbitrary times throughout the experiment. Leveraging the mechanism described in §4,
BiscAy detects when the end-to-end bandwidth reduces compared to the KPI-based wireless
link bandwidth estimate and swiftly switches to BBR. Conversely, when that condition is not
met, BISCAY goes back to its normal operation mode. This prompt adaptation to changes in
the network conditions ensures an effective utilization of the available bandwidth.

6.4 Wireless-aware CC Evaluation

So far, we have compared BISCAY with the most used and relevant CCAs; however, there are
few wireless-specific CCAs that also leverage air-interface KPIs to operate that are missing
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Figure 13 a) Throughput and delay comparison of BISCAY compared with PBE-CC. b) Through-
put and delay comparison of BiscAy, BBR and CUBIC using a COTS UE (Google Pixel 5).

in the evaluation. Specifically, PBE-CC [101], a CCA built atop NG-Scope [100] which is
LTE-only sniffer that extracts DCI messages from the air interface containing the scheduling
grants of the users in a given cell. PBE-CC works on the principle of exploiting all the
available PRBs that have not been allocated to any user in the air interface to transmit data.
Note that PBE-CC operates only in 4G downlink direction, thus, we have implemented an
equivalent version of BISCAY for a fair comparison. Inspired by the feedback mechanism
employed in prior wireless/cellular CCAs such as Sprout [97], in our implementation, the
cellular downlink bandwidth derived from downlink KPIs (PRBs and TBS extracted from the
DCI downlink grant) is sent to the sender using the TCP flow control mechanism. BISCAY
calculates the observed downlink bandwidth using OPENDIAG and sends it to the other
endpoint which uses it to determine how much traffic is sent.

Figure 13a demonstrates the comparison of Biscay and PBE-CC in commercial 4G
network scenarios. We observe that both PBE-CC and BiscAy achieve similar throughput as
both maximize the available network bandwidth. However, BIsSCAY outperforms PBE-CC in
terms of delay with BISCAY halving the average and tail delays compared to PBE-CC. This
behavior can be attributed to PBE-CC’s mechanism of increasing the downstream sending
rate when PRBs are available and assuming that the base station will grant those resources
to it. This simplistic and naive view of the base station’s MAC scheduler is far from how
commercial schedulers work. In practice, however, most if not all schedulers implement
some variation of proportional fair (PF) which uses the number of UEs in the cell and
the UE scheduling requests/buffer status reports (a reflection of how much data each UE
wants to transmit), channel quality measurements (CQI and periodic measurement reports
concluded by the UE and the base station), bearer quality of service and even the historic
grant allocation as input. The performance of PBE-CC is intricately linked to the channel
quality reports from both the User Equipment (UE) and the base station. The base station
grants resources based on these quality assessments: a poor channel quality results in fewer
PRBs with lower MCS to ensure the UE can decode them. While UEs typically receive
resources if they have data to send, boast good channel quality, and haven’t recently received
resources. PBE-CC’s narrow focus on only the available resources ignoring everything else
can lead to queue buildups, thus increasing delays.

6.5 Biscay’s Real-World Evaluation

Pantheon emulation can deviate from the real-world throughput and delays by up to 17% [104].
To demonstrate its deployability and to overcome the inherent limitations of emulation, we
implemented BiscAy on a COTS UE (Google Pixel 5). We evaluated it alongside BBR
and CUBIC on real private and public networks. Real-world evaluations pose a significant
challenge due to variable external conditions, like random noise and other users in the cell
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across experiments. Such factors can significantly impact the performance of the different
CCAs. To minimize such external factors across experiments, we used a private network with
two base stations (leveraging srsRAN [88]) configured to be neighbor cells (with handovers
between them) and core network (Open5GS [61]). To ensure reproducible network conditions,
the experiments were conducted when there was no other COTS UE in the network. In
addition to private network deployment, we also conducted evaluations on public networks of
two major US operators (Verizon and T-Mobile). These evaluations span diverse scenarios,
including: static/mobile, single-cell/CA, 4G/5G networks, and on-peak/off-peak periods. For
consistency, the same mobility patterns and static positions were used across experiments in
both private and public networks.

Figure 13b shows the results of experiments using a COTS UE with CUBIC, BBR and
BISCAY over both private and public networks. Similar to the results obtained with Pantheon,
CUBIC saturates the bottleneck wireless link, resulting in maximum bandwidth usage and
high average/tail delays due to queue build-up. Compared to CUBIC, BBR achieves similar
average throughput, but has lower average and tail delays due to relatively more accurate
bottleneck bandwidth estimation. Notably, BISCAY outperforms both BBR and CUBIC in
terms of throughput and delay in both private and public networks. Specifically, BISCAY gets
4.6% higher throughput than CUBIC and BBR while reducing average and tail delays by 46%
and 44%, respectively, compared to BBR. Interestingly, the highest delays experienced by
Biscay are lower than the lowest delays experienced by CUBIC and BBR. This experiment
demonstrates how the different components of the BISCAY system effectively work together
in challenging real-world conditions.

7 Conclusions

We propose BISCAY, a practical and radio KPI-driven congestion control design for mobile
networks. BISCAY leverages OPENDIAG, our in-kernel real-time radio KPI extraction tool
that allows KPIs to be obtained from the radio modem at fine ms scale granularity. It enables
BI1scAY to accurately determine the bottleneck bandwidth on the device side to achieve
high throughput and low delays. BISCAY is extensively evaluated and compared against 9
state-of-the-art CCAs in a wide variety of scenarios using our 4G/5G performance traces
and real-world experiments using a commodity mobile device. BISCAY shows a significant
reduction in average and tail delays, notably 58%/41% and 98%/99% average/tail delay
reduction compared with BBR and CUBIC, respectively.
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A Appendix

A.1 Dataset and evaluation scenarios

The result of our measurement campaign is a dataset that contains 4G/5G traces in equal
proportion, collected in a variety of cities across Europe and the US. Within the 4G portion,
50% of the traces are collected in static scenarios and 50% under mobility. However, the
5G part of the dataset is split in 20% static and 80% mobility. This distribution may lead
to artifacts in the evaluation, such as CCAs appearing to perform better under mobility
scenarios. This outcome might seem counterintuitive given that 5G generally offers superior
performance, with higher throughput and lower latency. Across both 4G and 5G traces,
60% were collected during peak hours, while the remaining 40% during off-peak hours. In
addition to those four scenarios, the collected traces as well as the real-world experiments
capture the complete range in terms of connection states and events [18]: 4G/5G RRC idle
to connected (the modem is disconnected from the network and new connection is established
in order to send traffic), 5G RRC inactive to connected (the modem is not fully disconnected
from the network and the previous RRC session gets reused to establish a data channel),
network attachment and sessions establishments over all the radio access technologies (4G/5G
NSA/5G SA) and all possible handover combinations (4G-to-4G, 4G-to-5G, 5G-t0-4G and
5G-t0-5G). All the previously listed events and state transitions are evenly distributed across
the different scenarios captured in the measurement campaign as well as the live experiments.
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This callback is triggered when:

Receive ACK

Timeout

Duplicate ACK

Explicit Congestion Notification (ECN)

biscay_congestion_window_callback():

# Transition between states based on network conditions
if state == STARTUP:

cwnd = SlowStart()

# Try to get bandwidth from KPIs

if getCellularBW() == OK:
# Swicth to Biscay when we get KPI-based bandwidth
state = BISCAY

# Biscay mode: the bottleneck is in the RAN
elif state == BISCAY:

# Get cellular bandwidth from KPIs (OpenDiag)

cellular_bw = getCellularBW()

# Get end-to-end bandwidth (BBR)

end_to_end_bw = getEndToEndBandiwdth (BBR)

# Get RTT

rtt = min(rtt, MeasureRTT(last_ack))

# Set CWND

cwnd = BandwidthDelayProduct (BWSplitPolicy(cellular_bw), rtt)

# Check bottleneck location

if cellular_bw > end_to_end_bw: # Bottleneck in the wired segment
# Trigger fallback mechanism
state = FALLBACK
# Set CWND using the wired-specific CCA selected (BBR)
cwnd = setCWNDfromFallbackCCA(BBR)

# Fallback mode: the bottleneck is in the wired segment
elif state == FALLBACK:

# Set CWND using the wired-specific CCA selected (BBR)
cwnd = setCWNDfromFallbackCCA(BBR)

# Get cellular bandwidth from KPIs (OpenDiag)
cellular_bw = getCellularBW()
# Get end-to-end bandwidth (BBR)
end_to_end_bw = getEndToEndBandiwdth (BBR)
# Check if the bottleneck has changed
if cellular_bw == end_to_end_bw: # Bottleneck in the cellular link
# Disable fallback mechanism
state = BISCAY
# Get RTT
rtt = min(rtt, MeasureRTT(last_ack))
# Set CWND
cwnd = BandwidthDelayProduct (BWSplitPolicy(cellular_bw), rtt)

return cwnd

# Function that splits the available bandwidth equally for all flows
BWSplitPolicy (bw) :

# Get number of active flows (Including UDP)
num_flows = getNumberActiveFlows()
return bw/num_flows
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A.2 Discussion on Biscay CC internals
A.2.1 Biscay and BBR

We present the pseudo-code for BisCAY’s functionality. Like other CC algorithms in Linux,
Biscay’s CC module gets deployed in the kernel as a module and the congestion control
function (calculate_congestion__window__callback()) is invoked as a callback. BISCAY logical
structure is a state machine with three states: STARTUP, BISCAY, and FALLBACK.

STARTUP: When a TCP socket is open, it goes into the STARTUP phase. We leverage slow-start
[49], which exponentially increases the congestion window in order to fill the pipe quickly.
However, unlike other CCAs that remain in the slow-start phase until a congestion condition
is met (e.g., the bandwidth reaches a ceiling, packets start dropping, delay increases, etc.),
BISCAY exits the STARTUP state and moves into BISCAY when a reliable KPI-based bandwidth
prediction can be made (usually after a couple of slow-start iterations). In practice, when
the phone has been running for some time, this phase is mostly skipped, given that it is
highly probable that when a socket gets open and starts transmitting (STARTUP state), other
sockets are already transmitting in the system and therefore reliable KPI-based bandwidth
predictions from OPENDIAG can be obtained.

BISCAY: During the BISCAY, BISCAY sets the congestion window according to the logic
defined in §4. The cellular bandwidth (cellular _bw) is calculated from the KPIs extracted
with OPENDIAG and combined after splitting it according to the number of active flows
(BWSplitPolicy(bw)) with the RTT (obtained as the minimum of the previous RTT value
and the RTT of the last ACK) into a congestion window value using the BDP. Then, Biscay
checks for a change in the bottleneck location. It does so by comparing the end-to-end
bandwidth with the cellular bandwidth. In case the bottleneck moves to the wired segment,
BISCAY switches state to FALLBACK and falls back to an end-to-end CCA (BBR). Otherwise,
it returns the congestion window previously calculated.

FALLBACK: In the FALLBACK, BISCAY calculates the congestion window using the selected
wired-specific CCA (BBR). Then, similar to BISCAY state, BISCAY checks for changes in the
location of the bottleneck using the cellular bandwidth and the end-to-end bandwidth. If
the bottleneck switches, the state changes to BISCAY.

A.2.2 Multi-flow bandwidth distribution

Given the flow’s homogeneity [78] (where the average lifespan of flows tends to be similar), we
have implemented a simple yet effective bandwidth distribution policy that equally splits the
available bandwidth among the active flows. This approach not only promotes fairness but
also ensures efficiency by avoiding complex kernel-level computations, particularly floating-
point operations, which are unsupported and could introduce additional delays. Although
BiscAy’s focus is on TCP, our bandwidth distribution policy also aims for fairness with
other transport protocols by accounting for UDP connections (QUIC [59], which is used
by a number of Google applications and web-based applications, runs over UDP). It does
so by also including UDP active flows when calculating the number of active flows in the
system (getNumberActiveFlows()), ensuring fairness across transport protocols. However,
there are still some scenarios that are negatively affected by our bandwidth distribution
policy. The most relevant one is an application that opens multiple TCP sockets. It would
have an advantage over an application that only uses one socket. This could be addressed
with an iteration of our policy which, rather than targeting inter-flow fairness, uses inter-app
fairness. This could be achieved by looking at the process ID (PID) of each active flow and
proportionally assigning bandwidth to the PID rather than the flows open by the process.
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Alternatively, more advanced scheduling mechanisms, such as round-robin or proportional
fairness, could be integrated to address these limitations.

A.2.3 Biscay and other CCA

Inspired by newer versions of BBR (v2 and v3) that integrate additional signals for enhanced
end-to-end bandwidth estimation [93], BISCAY could also leverage congestion signals from
other CCAs. From CUBIC and Reno, BISCAY could use packet loss to complement the
end-to-end bandwidth determination method and make it more precise. CUBIC/Reno could
be used as a fallback CCA in case BISCAY detects that the bottleneck has shifted to the wired
segment. Similarly, Explicit Congestion Notification (ECN) can complement the end-to-end
metric. Other domain-specific CCAs, such as DCTCP [25], rely on queue occupancy and
packet reordering to determine when the bottleneck is reached. Queue occupancy metrics
could improve BISCAY ’s cellular bandwidth estimation by leveraging RLC-layer queue sizes
obtained directly from the modem via OPENDIAG. Using techniques from TCP Vegas and
Compound TCP, BiSCAY could give more importance to time-based metrics such as one-way
delay (delay gradient) or jitter to improve its bandwidth localization accuracy.
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