
Tight Loops, Smooth Streams: Responsive
Congestion Control for Real-Time Video
Pantea Karimi
Massachusetts Institute of Technology, USA

Sadjad Fouladi
Independent Researcher (work performed while at Microsoft Research), USA

Vibhaalakshmi Sivaraman
Amazon, USA

Mohammad Alizadeh
Massachusetts Institute of Technology, USA

Abstract
Real-time video streaming relies on rate control to match video bitrate to network capacity while
keeping latency low. Existing deployed video rate controllers react slowly to network changes,
causing under-utilization and latency spikes. In contrast, modern delay-sensitive congestion control
algorithms (CCAs) adapt on round-trip-time timescales, maintaining a tight feedback loop that
achieves both high utilization and low latency.

We introduce Vidaptive, a lightweight framework that enables real-time video to leverage re-
sponsive CCAs without codec changes. Vidaptive decouples encoding from transmission: it paces
video frames at the CCAs rate and injects dummy packets when the encoder output is insufficient,
preserving a continuous feedback loop. An online algorithm dynamically adjusts the encoders target
bitrate to align with CCA capacity while bounding frame latency.

Implemented in Google WebRTC, Vidaptive improves both video quality and tail latency on
diverse cellular traces. Compared to GCC, it delivers 1.5× higher bitrate, +40% VMAF, +1.4 dB
SSIM, +1.3 dB PSNR, and reduces 95th-percentile frame latency by 57% (2.2 seconds). Against
Salsify, it achieves lower tail latency without invasive codec modifications. These results show
that coupling existing CCAs with a thin adaptation layer can outperform specialized video rate
controllers while remaining deployable in practice.

2012 ACM Subject Classification Networks → Transport protocols

Keywords and phrases real-time video, congestion control, transport protocols, video rate control,
low-latency video communication, tight feedback loop

Digital Object Identifier 10.4230/OASIcs.NINeS.2026.9

Acknowledgements We thank Keith Winstein for countless conversations about this work over
the years; this version of the paper would not have been possible without Keith’s insights. We also
thank Weiyang “Frank” Wang and Sudarsanan Rajasekaran for their valuable feedback and support.
We are grateful to Behnaz Arzani and Siva Kesava Reddy Kakarla for their insightful comments,
particularly on framing the narrative of the paper. Finally, we thank our shepherd, Zili Meng, for
their guidance throughout the shepherding process.

1 Introduction

Real-time video has become ubiquitous on the Internet, enabling applications such as video
conferencing (e.g., Teams, Google Meet), cloud gaming, and teleoperation [13, 40]. Unlike
on-demand video streaming, real-time video faces two key challenges. First, latency is
critical: in cloud gaming, for example, even small delays could make the game unplayable [46].
Second, unlike on-demand streaming, which pre-fetches and buffers content to mask network
variability, real-time video must adapt instantaneously to network fluctuations.

© Pantea Karimi, Sadjad Fouladi, Vibhaalakshmi Sivaraman, and Mohammad Alizadeh;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 9; pp. 9:1–9:29

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pkarimib@mit.edu
https://orcid.org/0009-0002-1243-8483
mailto:sfouladi@gmail.com
https://orcid.org/0000-0002-9451-1877
mailto:vibhaalakshmi@gmail.com
https://orcid.org/0000-0001-8842-4497
mailto:alizadeh@csail.mit.edu
https://orcid.org/0000-0002-0014-6742
https://doi.org/10.4230/OASIcs.NINeS.2026.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


9:2 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

A critical component in meeting latency targets for real-time video is the rate controller,
which continuously adjusts the video bitrate to match available network capacity. Since
buffering is virtually absentand fundamentally at odds with low-latency operationrate con-
trol becomes the main mechanism for balancing strict latency requirements with high video
quality. State-of-the-art rate controllers for real-time video, however, have significant short-
comings: they respond slowly (up to seconds) to changing network conditions, causing both
under-utilization and latency spikes. This problem is well recognized, and numerous works
have examined it [21, 42, 46, 5, 35, 33].

Real-time video has two coupled objectives: maximizing delivered visual quality (∝ good-
put) while keeping frame latency low (∝ packet latency). Many delay-sensitive congestion
control algorithms (CCAs) are designed for the same goal [7, 10, 50, 55, 18]. These CCAs
can adapt their sending rate to changes in available bandwidth within just a few round-trip
times (10s of milliseconds). By contrast, in our experiments on cellular traces, Google Con-
gestion Control (GCC) [11, 9]—the default production rate controller in Google’s WebRTC
stack1— used only one-third of the available bandwidth compared to Copa [7], while suffer-
ing 7× higher P95 packet latency. This problem is not unique to GCC; prior work has shown
that other real-time video rate controllers like Skype also struggle to adapt to bandwidth
variations quickly [50].
Why do video rate controllers perform poorly in variable networks compared
to state-of-the-art CCAs? As shown in prior work [21], the fundamental issue is that
the rate controller cannot precisely control the size of the video frames produced by the
video encoder. Best-in-class CCAs [7, 10] are effective when the sender always has data
ready to send — in other words, when the flow is backlogged. For a backlogged flow, the
CCA can precisely control the timing of transmissions and the number of packets in flight.
Having packets constantly in flight maintains a tight feedback loop between the sender and the
network. Each packet acts as a probe and the controller can rapidly estimate the available
bandwidth. Without packets on the wire, however, this loop breaks, and the sender is left
blind to the networks current state. This is particularly problematic on networks where
bandwidth is highly variable, such as wireless networks.

In real-time video, the video encoder emits frames at fixed intervals. The frame size
depends on content complexity, video motion, codec settings, and the target bitrate. The
encoders output is inherently unpredictable. The rate controller requests a target rate, but
the encoder cannot deliver it precisely (see Fig. 1a). The resulting mismatch makes it difficult
to track variable bandwidth effectively. Small frames underutilize the link and disrupt the
CCA’s feedback loop; oversized frames overshoot capacity, inducing queues and delay.

Since the encoder’s output cannot be accurately controlled, most systems adopt a con-
servative strategy, prioritizing latency over video quality. The rate controller increases the
video bitrate slowly and leaves significant headroom to avoid queue buildup—at the cost of
lower utilization [11, 9]. This is the approach taken by WebRTC and GCC.

A second approach, proposed by Salsify [21], addresses the problem from the encoder side.
It redesigns the encoder to generate multiple candidate encodings of each frame, enabling
the transport layer to select the largest frame that fits within the available capacity. This
architecture is compelling, but it requires intrusive codec modifications. Since production
codecs are highly optimized systems (often with hardware acceleration), such a forklift

1 WebRTC is the engine behind many browser-based real-time video applications. Since the publication
of the original GCC paper, the algorithm deployed in WebRTC has evolved; we use version M108 [16]
in our study.



Pantea Karimi et al. 9:3

change to the codec is difficult to deploy.
Do we need specialized transport protocols or new codecs? We set out to un-
derstand if it is possible to reuse best-in-class CCAs for real-time video, retaining their
strong performance in throughput, delay, and responsiveness. We developed Vidaptive, a
framework that introduces a thin layer between existing unmodified encoders and CCAs,
enabling best-in-class CCAs to operate at full potential. Vidaptive significantly improves
responsiveness to network variability and its design builds on two key ideas.

Our first idea is to decouple packet transmissions from the encoders output. Vidaptive
treats video streams as backlogged flows for rate control: if the encoder produces more
packets than the CCA can send, they are queued and paced at the CCAs rate; if it produces
too few packets, Vidaptive injects dummy packets to satisfy CCA’s sending rate. On the
wire, this novel scheduling of dummy packets makes Vidaptive behave like a continuously
backlogged CCA, keeping the feedback loop intact and yielding more accurate bandwidth
estimates.

Our second idea is a set of techniques to align the video bitrate with the CCAs sending
rate while keeping frame latency bounded. To guide the encoder, Vidaptive runs an online
algorithm that sets the target bitrate based on the CCAs rate and recent frame transmission
times. It measures frame transmission times and maintains a headroomthe gap between the
encoders bitrate and the CCAs rateneeded to meet a desired frame delay. By tracking the
distribution of observed delays, Vidaptive adapts this headroom to both encoder and network
variability. The amount of headroom provides a simple knob to trade off video quality
and latency, enabling operating points that were not possible before. For example, video
conferencing can tune Vidaptive for ultra-low latency, while live streaming can prioritize
video quality at the cost of modestly higher latency.

Vidaptive shows that we may not need specialized transport protocols for real-time
video (e.g., Salsify [21], GCC [11], Pudica [46]); existing CCAs can suffice with the right
architecture. The key aspect of this architecture is to enable the CCA to maintain a tight
feedback loop for accurately tracking network bandwidth changes. Vidaptive achieves this
by supplying extra traffic as needed to keep the flow backlogged. It may be counterintuitive
to send extra packets in variable network conditions when we have strict latency targets.
Yet surprisingly, our results show that, even with the overhead of extra traffic, video tail
latency and quality both improve compared to existing rate controllers. The tight feedback
loop of the CCA is the main driver of this improvement, and its advantage in estimating the
available bandwidth accurately is so substantial that it outweighs the cost of extra traffic.

We implemented Vidaptive on top of WebRTC (M108 [16]). On a set of cellular traces,
Vidaptive improves the video quality and tail latency. It increases average video bitrate by
1.5×, increases SSIM by 1.4 dB and Video Multi-Method Assessment Fusion (VMAF) [32]
by 40%, while reducing P95 frame latency by 2.2 s, a 57% reduction. Against Salsify, Vid-
aptive achieves markedly lower tail latency while requiring no codec changes. We show that
Vidaptive seamlessly adapts two CCAs: Copa and ROCC [4], a BBR variant, for real-time
video.

2 Motivation and Key Ideas

2.1 The Problem
Status Quo for Video Rate Control. To see how todays production systems handle real-
time video, we evaluate Google Congestion Control (GCC) [11], the rate control mechanism
inside WebRTC, on a simple link. WebRTC is the engine behind browser-based real-time

NINeS 2026



9:4 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

Video 
Encoder

Target 
 Bitrate Achieved rate 

on the wire

Traditional
CCA

Backlogged
Flow

Video Rate
Controller

Network

(a) In current video rate controllers, unlike
traditional CCAs, instantaneous rate on the

wire is dictated by the video encoder.

(b) Video encoder has a sluggish “Achieved”
response to a time-varying “Target” input

bitrate.

(a) Link Utilization (b) Frame Quality (c) Frame Latency

Figure 2 Utilization, frame quality, and latencies of Copa on a backlogged flow, GCC on a video
flow, and Vidaptive on a video flow. GCC is slow to match the available capacity and under-utilizes
the link in the steady state. Vidaptive responds much faster to link variations and is similar to
Copa’s performance on a backlogged flow.

applications, including Google Meet and Microsoft Teams. We ran a recent version of
WebRTC (M108 [16]) on an emulated link that alternates between 2 Mbps and 500 Kbps
every 40 seconds. The minimum round-trip time (RTT) is 50 ms, and the bottleneck buffer
is large enough to avoid packet drops.

As shown in Fig. 2a, GCC is sluggish when ramping up: at the start of the stream and
again when the link recovers to 2 Mbps at t = 80s, it takes 18 seconds to climb from 500 Kbps
to 2 Mbps, resulting in lower visual quality during that time (Fig. 2b). GCC is also slow to
react to link drops: when the link rate falls to 500 Kbps at t = 40s, frame latency spikes to
over a second and takes 12 seconds to stabilize (Fig. 2c).

Contrast this behavior with traditional congestion control algorithms [7, 4, 8, 10] operat-
ing on backlogged flows that always have packets waiting to be sent. They respond to such
network events much faster, typically over few RTTs. For instance, the “Backlogged Copa”
lines in Fig. 2a shows that Copa [7] reacts quickly on the same time-varying link. This wide
disparity raises the question: Why does state-of-the-art video rate control lag so far behind
state-of-the-art congestion control?
Encoder-driven Rate Control. In video rate controllers like GCC, the instantaneous
rate on the wire is dictated by the frame sizes produced by the encoder (see Fig. 1a), unlike
traditional CCAs, where the controller itself regulates the rate on the wire. GCC controls
the video bitrate by adapting the encoder’s target rate, but the encoded frame sizes can be
highly variable. The encoder achieves its target bitrate only on average–usually over several
frames [21], and cannot immediately adapt to sudden changes. We illustrate this in Fig. 1b



Pantea Karimi et al. 9:5

where we supply the VP8 encoder with a target bitrate that switches between 2 Mbps and
500 Kbps every 5s. Every time the bitrate goes up from 500 Kbps to 2 Mbps, the encoder
takes nearly 2 seconds to catch up. On the way down from 2 Mbps to 500 Kbps, it takes
about a second to lower the bitrate. The reason for this lag is that the size of an encoded
frame depends on factors such as quantization parameters, the encoder’s internal state, and
the motion in the video, and it is only known accurately after encoding [21]. The encoder
tries to rectify over- and under-shootings by adjusting the quality of subsequent frames, thus,
it shows significant per-frame variance around the average.

Because the encoder cannot match the target bitrate on a per-frame timescale, GCC
cannot quickly reduce its rate when capacity drops. Instead, GCC has to be conservative
and leave abundant headroom at all times. Even in the steady state, GCC limits utilization at
about 85% and still experiences occasional latency spikes (Fig. 2c). Headroom lowers the risk
of a latency spike during fluctuations but makes it difficult to track the available bandwidth
accurately because it breaks the tight feedback loop from the network. For instance, GCC
relies on delay gradients to estimate link rate, but when the link is underutilized, queues do
not build and gradients provide no signal. As a result, GCC ramps up slowly to discover
capacity. Recall that when GCC increases its target bitrate, the encoder takes a few seconds
to catch up. GCC must wait for the video bitrate to increase before it knows if it is safe to
increase it further, so the entire process takes 15–20 seconds to converge (Fig. 2a).
Basic probing mechanisms are not enough. Video systems like WebRTC support
simple probing mechanisms [49] that send padding traffic to test for extra bandwidth. For
instance, GCC fires a periodic timer (e.g., every 5 s) and injects padding packets to probe
capacity. Such coarse probing cannot deliver precise rate control, which requires RTT-scale
feedback. As shown in Fig. 21a (Appendix A), GCC behaves almost the same on the
alternating link with or without this probing. We show that probing must be synchronized
with the congestion controller to be effective.

2.2 Our Solution
Decoupling the encoder from the rate on the wire. As shown in Fig. 2a, a back-
logged flow using a state-of-the-art CCA, like Copa, can adapt to network capacity on RTT
timescales while also controlling network queueing delay. A key reason is that such CCAs
maintain a tight feedback loop, deciding on every RTTand even on every ACKhow many
packets to keep in flight [27]. Vidaptive’s core idea is to make video stream appear like a
backlogged flow to the CCA to leverage their high throughput, low delay, and fast conver-
gence. In Fig. 2, Vidaptive, using Copa for congestion control, achieves the same throughput
and network delay as a backlogged Copa. Vidaptive ramps up quickly when bandwidth in-
creases, delivering higher image quality than GCC (Fig. 2b). It also avoids GCCs latency
spikes (Fig. 2c) by reacting fast to bandwidth drops.

Vidaptive sends packets on the wire according to the congestion controllers feedback
loop. When the encoder overshoots the capacity, Vidaptive queues excess video packets
and only sends them when congestion control allows (e.g., based on the congestion window
and in-flight packets for window-based CCAs). When the encoder undershoots the available
capacity, Vidaptive sends “dummy packets” to maintain the sending rate requested by the
controller.2 This design preserves the CCA’s feedback loop, so it continues to behave as if it

2 This dummy traffic could also be repurposed for helpful information such as forward error correction
(FEC) packets [43, 37, 29] or keyframes for faster recovery from loss. We leave such enhancements to

NINeS 2026



9:6 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

t t+ t + T(t)
Time

Ca
pa

cit
y

Frame encoded
and sent

Link Capacity
Frame Size
Latency overflow

Figure 3 Frame transmission time (T (t)) fluctuates with link and encoder variability and can
exceed latency thresholds. Vidaptive mitigates this by measuring frame transmission times and
adapting the encoders target bitrate online.

were serving a backlogged flow. Our evaluations show that, contrary to the common belief
that dummy traffic “seldom works for real-time video” [57], careful use of it in our design
improves video bitrate while keeping latency low.
How Vidaptive handles variability. By decoupling the congestion controllers fine-
grained feedback loop from the encoders variable output, Vidaptive can accurately track
time-varying bottleneck rates independent of video traffic — something GCC and other rate
controllers, which rely on video traffic for estimation, cannot do. Still, we must align the
video bitrate with the controllers sending rate to ensure good quality and latency.

Despite estimating the link rate accuracy, controlling the frame latency is challenging
due to encoder and link rate variability. We show why using a simplified idealized example
(Fig. 3). At time t, let the CCA’s measured link capacity be C(t). Assume that we set the
encoders target bitrate to C(t) and it immediately outputs a frame of size C(t)∆ + σ(t),
where ∆ is the frame interval and σ(t) captures output variability. If no other data is in
flight, the frame transmission time T (t) satisfies the following:

∫ t+T (t)
t

C(τ) dτ =
frame size

C(t)∆ + σ(t)
(1)

Fig. 3 shows frame size as the area under the capacity curve. Network fluctuations can push
T (t) beyond acceptable limits. This issue stems from traditional video codecs: once a frame
is encoded it cannot be changed. The sender then has two choices: send the oversized frame
and cause delay, or drop it and restart with a keyframe, which usually produces an even
larger frame [21].

Consequently, it not possible to increase the video bitrate without affecting the tail
latency. Pushing the target bitrate too close to link capacity risks latency spikes during
sudden capacity drops. For example, a frame that takes 33 ms to transmit on a 2 Mbps link
needs 132 ms if the rate suddenly falls to 500 Kbps, leading to an unavoidable increase in
latency.

To bound latency, we must reserve headroom and allocate only a fraction of measured

future work and focus solely on the impact of dummy traffic on video congestion control.



Pantea Karimi et al. 9:7

Video 
Encoder

CC-Rate

Receiver
VVD

ACK
ACK

ACK

NetworkPacer / Dummy 
GeneratorVVVVV

Media Queue

Video Frames

⍺ ∙ CC-Rate

Queue Info
(e.g., frame 
service times)

! / "

Encoder Rate 
Controller

Output Video Bitrate

CC
-R

ate
cw

nd

Congestion 
Controller

Figure 4 Vidaptive Design. Vidaptive uses a window-based Congestion Controller, Pacer, and
a new Dummy Generator to decouple the rate at which traffic is sent on the wire from the encoder.
The Encoder Rate Controller monitors frame delays to trigger latency safeguards and picks a new
target bitrate as the discrepancy between the CC-Rate and the video encoder’s current bitrate to
control the latency.

capacity to video. Vidaptive does this by setting the encoders target bitrate to α(t) · C(t),
where 0 < α(t) ≤ 1. Vidaptive has an online algorithm that tracks frame transmission
times and adapts α(t) so the latency stays within a desired bound. Doing so, Vidaptive
handles both network and encoder variability (i.e., σ(t)) simultaneously. Another interesting
advantage of this algorithm is that users can tune their desired latency upper bound and
allow for a tradeoff between video quality (size of the frames) and latency by tuning α.

3 Vidaptive Design

Fig. 4 shows Vidaptive’s overall design. The video encoder encodes frames and sends them
to an application-level media queue before sending the packets into the network. At the
transport layer, we add a window-based “Congestion Controller,” a “Pacer,” and a “Dummy
Generator” to decouple the rate at which traffic is sent on the wire from what is produced by
the encoder, as described in §3.1. We introduce an “Encoder Rate Controller” that monitors
the queueing delay frames are experiencing to trigger the latency safeguards described in
§3.2. The Encoder Rate Controller also controls the encoder’s target bitrate based on the
discrepancy between the CCA’s sending rate, the video encoder’s current bitrate, and the
observed frame transmission times (§3.3).

3.1 Transport Layer
Congestion Controller. Vidaptive uses a delay-controlling window-based congestion con-
trol algorithm to determine when to send packets3. The congestion window (cwnd) limits
the maximum number of in-flight bytes between the sender and the receiver. The sender
keeps track of the number of bytes in flight and only sends out new packets if the amount
in-flight is less than cwnd. Vidaptive can use any CCA that controls delay effectively. Our
focus is not on designing a new CCA; fortunately, several excellent algorithms already exist.
We use two recently proposed algorithms, Copa [7] and RoCC [4] in our implementation.
Most of our results use Copa, which keeps a tight check on the network delay, reacts to

3 We exclude buffer-filling CCs such as TCP Cubic from our focus due to their tendency to build large
queues and increased latency.

NINeS 2026



9:8 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

changes quickly, and maintains high utilization. Vidaptive’s sending behavior is identical to
its underlying CCA (§2.2), so it inherits these properties as well as the flow-level fairness
characteristics of the CCA.
Pacer. Beside enforcing the cwnd constraint, the sender also paces the packet transmissions
at the CCA’s sending rate (CC-Rate), computed as the cwnd divided by smoothed RTT (a
weighted moving average of RTT samples). Since the encoder’s output bitrate may overshoot
the available capacity (§2.1), the Pacer is responsible for avoiding a sudden burst of packets.
Dummy Packets. Our goal is to reshape the video traffic as a backlogged flow to enable
the CCA to track changes in available bandwidth quickly and accurately (§2.2). To this
end, we generate “dummy packets” if the CCA is ready to send a packet as if the stream
as backlogged, but no video packets are available in the Pacer. Dummy packets are strictly
lower priority and are sent judiciously and with respect to delays; they are only sent if the
Pacer queue is empty and congestion control detects free bandwidth. To limit unnecessary
traffic, dummy packets are withheld if the next frame is expected soonspecifically, within
25% of the inter-frame time (8.25 ms for 30 FPS) in our implementation. The benefit of this
mechanism is that if the network is about to drop, the dummy packets sent a few milliseconds
before a frame will cause a higher queuing delay in the network. On the other hand, if the
network rate increases, skipping a few milliseconds of traffic does not noticeably slow the
controllers reaction.

Finally, dummy packets are disabled once the video reaches its maximum achievable
bitrate (12 Mbps in our experiments).4. Beyond this point, extra traffic would not improve
video quality or reveal useful bandwidth information.

3.2 Safeguarding against Latency Spikes
Encoder Pause. The encoder can overshoot and produce oversized packets (§2.1). To
control the latency, Vidaptive monitors how long packets sit in the pacer queue before being
sent. If the oldest packet waits longer than a certain pause threshold (τ), we pause encoding
of frames, and only resume it only once the pacer queue has drained. We set τ = 33 ms
by default in our implementation for a camera rate of 30 FPS, thereby pausing encoding if
packets from the previous frame remain unsent. The intuition is that there is no point in
encoding a new frame that would have to sit in the Pacer queue, waiting for an old frame
to finish transmission. Instead, we always encode and transmit fresh frames when they
have a high chance of reaching the receiver with acceptable latency. Note that a high delay
through the Pacer queue reflects congestion at the bottleneck link. If we ignore CC-Rate
and transmit the packets stuck in the Pacer queue (as currently implemented in WebRTC),
they would still have to wait at the bottleneck link, and clearing them would take longer
when the link bandwidth improves.

3.3 Handling Variability
Real-time video must cope with variability from both the network and the encoder. Even
if the congestion controller accurately tracks available capacity, frame sizes fluctuate unpre-
dictably, and sudden bandwidth drops can stretch frame latency beyond acceptable limits.
To manage this, Vidaptive treats target bitrate selection as a control problem: it chooses a

4 Our analysis of the 1080p videos within our dataset showed that the peak bitrate typically reached was
around 12 Mbps, so for this collection of videos, 12 Mbps represents the upper limit of bitrate.



Pantea Karimi et al. 9:9

fraction α of the estimated network rate (CC-Rate) to allocate to the encoder (§2.2). A smal-
ler α leaves more headroom, producing smaller frames that drain quickly and keep latency
low. A larger α raises frame quality but risks larger latency. In this way, α becomes the
knob for navigating the tradeoff between latency and video quality.

Preliminaries. To estimate the frame transmission time, we measure the frame service
time: the interval from when the first packet of a frame arrives at the front of the pacer
until its last packet is sent out on the network. The frame service time depends on both
CC-Rate and frame sizes. As a result, it is impacted by fluctuations in both the encoder’s
output and in the CC-Rate. These fluctuations are out of our control and can be viewed
as exogenous noise. However, we can influence the expected frame sizes by controlling the
encoder’s target bitrate. The crux of our method is to pick the target bitrate in a way that
controls the distribution of frame service times. Vidaptive measures the frame service time
for each frame in the Pacer.

Consider N frames over a duration D, each with a service time di for i ∈ 1, 2, . . . , N . The
distribution of di informs us about the frame latencies. If the camera’s frame rate is fmax

(typically 30 FPS), the frame interval is ∆ = 1
fmax

(typically 33 ms). For maximum efficiency,
service times should be close to, but less than, ∆, so that the last packet of a frame is sent
just as the next frame is encoded. For example, if the 80th percentile of the di distribution
is larger than ∆, then 20% of the frames take more than a frame interval (see Fig. 3). These
frames increase the delay of subsequent frames and may trigger latency safeguard (§3.2),
which skips frames. A heavy-tailed distribution of di values directly translates into high tail
latency of video frames.

Choosing Encoder’s Target Bitrate. Suppose the encoder is given a target bitrate
α · CC-Rate, where 0 < α ≤ 1. A larger α produces larger frames and longer service times
di, so di is function of α. Our goal is to find α to control the latency, or:

Percentileλ (di · α)N
i=1 = P (2)

where λ ∈ R(0,1] is the chosen percentile for latency control. In plain terms, the goal is to
align the λ-th percentile of service times with the desired target P . Real-time applications
typically use a high λ (e.g., λ = 0.9) to bound latency tail. For example, λ = 1 focuses
on worst-case latency. The parameter P expresses the tradeoff between quality and latency.
Choosing P closer to ∆ drives frame service times to ∆, increasing the video bitrate to near
capacity. This increases video quality at the cost of potentially higher latency. When P

is picked smaller than ∆ (e.g., P = ∆
2 ) the target bitrate values are chosen conservatively,

resulting in lower latency and potentially lower quality.

Finding α. Ideally, we would solve Equation 2 over future frames. But modeling di for
unseen frames is difficult because it depends on both future video content (e.g., motion) and
future changes in CC-Rate. Instead, we choose α based on the observed service times of
recent frames.

Suppose we have frame service times di for i ∈ {1, 2, .., N} measured over the last D

seconds. We want to know what value of α would have achieved Equation 2 for these
frames? If tri is the target bitrate used to encode frame i, had frame i been encoded by
α · CC-Rate instead, the frame service time would have been

d̃i(α) = di
α · CC-Rate

tri

We refer to d̃i(α) as the counterfactual service time for frame i. This estimate assumes
that frame size is proportional to the target bitrate (and hence proportional to α) and that

NINeS 2026



9:10 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

0 10 20
Sample #

10

20

30

40
d i

 (m
s)

(a) Service time samples

Normalized di
0

25

50

75

100

C
D

F 
(%

)

x

= P
x

(b) Solving the equation for α

0 10 20
Sample #

10

20

30

40

d i
 (m

s)

(c) Counterfactual samples

Figure 5 Finding target bitrate fraction (α). Given a set of frame service time samples (left),
whose λth percentile and outliers higher than P = ∆ are shown in red, we find α that matches the
counterfactual λth percentile to P (middle). We update the counterfactual values of frame service
time with α to have fewer outliers above P (right).

changing the target bitrate would not have changed CC-Rate.5 Using these counterfactual
service times, we can now find α in Equation 2.

α = min
(

P

Percentileλ

(
{di

CC-Rate
tri

}N
i=1

) , 1
)

(3)
Fig. 5 shows an example of this counterfactual problem for λ = 0.9. Fig. 5a shows the frame
service time samples and their λth percentile (red line). The samples that are less than
P = ∆ are colored in blue, and those larger than P (which would cause higher latency) are
colored in red. Fig. 5b shows the distribution of di

CC-Rate
tri

(called as normalized di) and its
λth percentile (denoted by x). Here, α is set to P

x . Fig. 5c shows the counterfactual frame
service time values, d̃i, had α been used to encode them. The scaled-down d̃i values reduce
the number of outliers above P (decreasing the latency).
How does α respond to variability? α controls the headroom between the encoder’s tar-
get bitrate (α·CC-Rate) and the estimated network rate (CC-Rate). Vidaptive automatically
adjusts α to cope with variability caused by both changing video content and fluctuating
network rates. Fig. 6 illustrates this behavior in three scenarios, all with λ = 0.9 and P = 33
ms.

Fig. 6a shows the values of α and the ratio of frame service time to ∆ = 33ms. In steady
conditions, α has a stable value of ∼ 1 and the P90 of the frame service times is below 33 ms.
Next, we test Vidaptive on the same link with a high-motion video [54] in Fig. 6b. The
encoded frame sizes and the frame service times are now much more variable. Consequently,
α adapts to the variable encoder output by switching to a lower value to control the tail of
frame service times. Finally, we run Vidaptive on a 1.5 Mbps link that experiences 10s of
high variability in Fig. 6c. Before the fluctuations start at 10s, frame service time values are
well below ∆ with α ∼ 1. During the noisy period (10s–20s), when the frame service times
increase, α decreases to improve the P90 of frame service time and reduce video bitrate.
When the link steadies after the 20s, α resets to its high value.

5 This holds because Vidaptive decouples CC-Rate from the encoder.



Pantea Karimi et al. 9:11

(a) Fixed 1.5 Mbps link with low-motion video.

(b) Fixed 1.5 Mbps link with high-motion video.

(c) 1.5 Mbps link with 10s fluctuation and a low-motion video.

Figure 6 α’s response to link and video encoder variations. α picks lower values (lower target
bitrate) when the link capacity or encoder output varies significantly to maintain good control over
the frame service times. di denotes the frame service time in milliseconds.

4 Implementation

We implemented our system on top of Google’s WebRTC [48].
Congestion Controller. We implement two window-based, delay-sensitive algorithms:
Copa [7] and RoCC [4], a BBR variant. For Copa, we reuse the logic from its reference
implementation [6]. RoCC works by fixing the congestion window (cwnd) to slightly more
than the number of bytes received in the last (1 + γ)RTTmin interval, where RTTmin is
the minimum observed round-trip time. This ensures a queuing delay of γ · RTTmin, with γ

controlling delay sensitivity. Unless otherwise noted, we use Copa as the default controller.
Dummy Generator. We repurpose the padding generator in WebRTC to generate dummy
packets that are within the cwnd and smaller than 200 bytes each. Dummy packets are
ACKed by the receiver (via RTP/RTCP feedback), but their payload is discarded. The
dummy packets have “padding” type in their packet header, and the receiver distinguishes
them from the “video” packets.
Latency Safeguards. If the oldest packet in the pacer queue waits longer than the pause
threshold (τ in §3.2), the transport layer sets the encoder target bitrate to zero to signal a
pause. We reuse WebRTC’s support for buffering the latest unencoded camera frame until
transmission resumes.
Encoder Rate Controller. Vidaptive records the target bitrate used for encoding each
frame. It also measures frame service time by recording the time that the first packet of a
frame is at the front of the pacer and when the last packet of the frame leaves the pacer

NINeS 2026



9:12 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

(this does not include the queuing time the frame spent in the pacer before frames ahead
of it). Every second (D = 1 s), Vidaptive updates α based on these service times using
the algorithm in §3.3. We also apply an EWMA smoothing over the values of α to ensure
gradual changes in the encoder’s target bitrate over time.

5 Evaluation

We evaluated Vidaptive on Mahimahi [39] and Pantheon [52] emulated links. Our experi-
mental setup is detailed in §5.1, and we use this to benchmark against existing systems in
§5.2. A thorough examination of Vidaptive’s design features is presented in §5.3. Additional
evaluations focusing on less critical parameters (λ and τ) and results with alternative quality
metrics are available in the appendix.

5.1 Setup
Testbed. We built a testbed, implemented in C++, on top of WebRTC [16] that runs
a headless peer-to-peer video call between two endpoints. The sender program emulates
a camera by reading video frames from an input file and the receiver records the received
frames to an output file. To match video frames between the sender and the receiver for
visual quality and latency measurements, a unique 2D barcode is placed on each frame [21].
We emulate different network conditions between the sender and receiver by placing the
receiver behind a Mahimahi shell. All experiments are run for 2 min on a link with a one-
way delay of 25 ms.
Metrics. To assess the performance of Vidaptive, we focus on two key metrics: frame
quality and frame latency. For frame quality, we use Video Multimethod Assessment Fusion
(VMAF [38]), comparing received frames to their original sources. Additionally, we report
Structural Similarity Index Measure (SSIM [47]), and report the Peak Signal-to-Noise Ratio
(PSNR [24]) in Appendix Fig. 24. We measure frame latency by the duration from frame
read at the sender to frame display at the receiver. We set the display time for undelivered
frames to the presentation time of the next frame displayed [21]. In addition, we report the
total video bitrate and frame rate at the receiver.
Network Traces. We evaluate each scheme on a set of 15 cellular traces bundled with
Mahimahi [39] and also use synthetic traces to illustrate the convergence behavior in Ap-
pendix C. For the cellular traces, we use a large bottleneck buffer size that does not incur
packet loss. We also evaluate each scheme on three Pantheons calibrated network emulation
traces [52]. These traces were tuned to mimic real Internet paths. They have limited buffers
(and thus incur congestion-induced loss) as well as stochastic packet loss.
Videos. We use a dataset of 20 different 1080p videos, each playing at 30 frames per second.
The dataset is curated from YouTube and spans different levels of motion intensity across
sports, cooking, video conferencing, nature documentaries, live performances, and screen
sharing. Unless specified otherwise, all experiments are conducted on the complete set of
videos from this dataset. Audio is disabled throughout the experiments. See Tab. 1 in
appendix for detail.
Baselines. We benchmark Vidaptive against several established congestion control al-
gorithms to highlight its performance for real-time video over variable links. First, we con-
sider the Google Congestion Control (GCC) algorithm, the standard for many real-time ap-
plications [11, 48]. The GCC protocol has changed since publication [11]; we used the latest
implementation in the M108 [16] version of WebRTC. Additionally, we compare Vidaptive
to Performance-oriented Congestion Control (PCC), another rate-based approach [17]. We



Pantea Karimi et al. 9:13

Figure 7 CDF of frame VMAF and SSIM and latency across all the 1M frames. Compared to
GCC and PCC, Vidaptive achieves higher VMAF and SSIM on all percentiles while getting better
latency on higher percentiles. Vidaptive increases the median latency over GCC by a marginal
amount of 17 ms. Copa’s higher VMAF scores come at a great latency cost, rendering it unsuitable
for real-time video applications.

include analysis against Copa, a state-of-the-art delay-based congestion control algorithm [7].
All algorithms are implemented within the same framework.

5.2 Vidaptive improves Video Quality and Tail Latency.
Cellular Traces. In Fig. 7, we compare Vidaptive against GCC, PCC, and Copa on the
cellular traces bundled with Mahimahi [41]. The figure shows cumulative distribution func-
tions (CDFs) for VMAF, SSIM, and frame latency across all traces and frames. Compared
to GCC and PCC, Vidaptive consistently delivers higher visual quality. It raises the average
VMAF to 53.5% (vs. ∼39% for GCC and PCC) and the median (P50) VMAF to 58.2%
(vs. 36.8% for GCC and 33.4% for PCC). For SSIM, Vidaptive improves the average to
14 dB (vs. 12 dB) and the median to 13.8 dB (vs. 12 dB). These quality increase is thanks
to Vidaptive’s effective link utilization.

Although Copa achieves higher VMAF and SSIM scores than Vidaptive, it suffers from
significantly higher latency (e.g., an average of 2.9 seconds), making it impractical for real-
time video. The issue is that, with video traffic, Copa is application-limited for most of the
time. Copa is designed for backlogged flows and does not interact well with video streams:
during periods of video silence, it observes no queuing delay and grows its congestion window
to its maximum cap, even though no packets are in flight. When the network rate later drops,
this inflated window causes excessive queuing and delay. In contrast, Vidaptive also uses
Copa as its underlying CCA, but reshapes the video source to behave backlogged, thus
preserving Copa’s responsiveness and effectively controlling latency.

Vidaptive significantly improves tail frame latency, particularly beyond the 75th per-
centile. These higher percentiles correspond to conditions with severe link variability and
outages, where Vidaptive reacts faster thanks to its tight congestion-control feedback loop.
At the 95th percentile, for example, Vidaptive reduces frame latency by 2246 ms relative
to GCC, cutting it from 3941 ms to 1695 ms. It also improves average latency by 351 ms

NINeS 2026



9:14 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

(383 ms vs. GCCs 734 ms). Compared to PCC, Vidaptive lowers both the average latency
(383 ms vs. 521 ms) and the median latency (65 ms vs. 81 ms). Vidaptive has a slightly
higher median latency than GCC (65 ms vs. 48 ms), caused by Vidaptive s always-on prob-
ing, which maintains a small standing queue to preserve tight feedback. Prior work shows
that latencies well under 100 ms are generally imperceptible to users [14, 15], so this small
increase has little practical impact.

-1

-0
.1

-0
.0

1

0.
01 0.
1 1 10

P95 Latency Improvement (s)

30
20
10
0

10
20
30
40

Av
g 

VM
AF

 
 Im

pr
ov

em
en

t

Better

Vidaptive vs. GCC Vidaptive vs. PCC Vidaptive vs. Copa

Figure 8 Performance benefits of Vidaptive over GCC, PCC, and Copa. Vidaptive either im-
proves latency or quality or both over all baselines.

Fig. 8 summarizes the tradeoffs between video quality and latency by plotting the average
VMAF and P95 frame latency of Vidaptive across all videos for each cellular trace. Each
point corresponds to a trace. Overall, Vidaptive consistently improves either quality, latency,
or both compared to all baselines.

Against GCC, Vidaptive delivers higher VMAF in 80% of traces and reduces P95 latency
in half of them; in the remaining half, it increases P95 latency by less than 100 ms, a negligible
penalty given the quality gains [15]. Compared to Copa, Vidaptive reduces P95 latency by
about one second across all traces. Relative to PCC, Vidaptive lowers P95 latency in 86%
of traces (13 out of 15) and achieves higher VMAF in 14 out of 15 traces.
Pantheons Calibrated Emulators. We further evaluate Vidaptive on three calibrated
emulated paths from Pantheon [52], which approximate real Internet routes. Unlike the
Mahimahi cellular traces, these paths have constant capacity with Poisson packet delivery,
but introduce loss and shallow tail-drop queues. We test on three representative traces“Nepal
to AWS India (Wi-Fi)” [3], “Mexico to AWS California (Cellular)” [2], and “AWS Brazil to
Colombia (Cellular)” [1]using five videos.

Fig. 9 shows that Vidaptive achieves substantially higher quality than GCC, with a
median VMAF of 44% vs. 15% and an average of 40% vs. 29%, while both reach a P95 of
79%. Against PCC, Vidaptive achieves higher VMAF across all percentiles.

In terms of latency (Fig. 9), Vidaptive reduces P95 latency by 933 ms (1739 → 806) and
average latency by 89 ms (362 → 273) compared to GCC, at the cost of a modest 19 ms
increase in median latency (137 → 156). This small rise is consistent with our cellular-
trace results and reflects the shallow standing queue that Copa, Vidaptive s underlying
CCA, maintains to track bandwidth. Compared to both PCC and Copa, Vidaptive achieves
strictly lower latency at all percentiles.



Pantea Karimi et al. 9:15

Figure 9 CDF of VMAF and latency for all the frames in Pantheon traces. Vidaptive improves
the quality over PCC. Compared to GCC, Vidaptive has better quality in low-medium percentiles
and similar quality in high percentiles. Copa has higher quality at the cost of significantly higher
latency. Vidaptive improves the latency in all percentiles vs. Copa and PCC. Compared to GCC,
Vidaptive improves 95th by ∼ 1 s while increasing the median latency 19 ms vs. GCC.

5.3 Vidaptive navigates Quality and Latency Tradeoff.

1234

P95 Latency (s)
30

40

50

60

Av
g 

VM
AF

P=10
P=15
P=20

P=33

GCC Better

Figure 10 Average VMAF vs P95 Latency over all the frames. Vidaptive trades off latency and
quality by parameter P and offers a better frontier than GCC.

In our analysis of Vidaptive, we first focus on the impact of varying the desired frame
service time (P ), which determines the tradeoff preference of latency and quality (§3.3).
Fig. 10 presents the average VMAF vs. P95 of latency of GCC and Vidaptive using different
values of P over all the frames. This illustrates that Vidaptive achieves a better performance
frontier than GCC. Vidaptive also offers different operating points for latency and quality
tradeoff.

To provide additional insight, Fig. 11 shows the distribution of metrics across all traces
and videos (15 × 20 settings). For the remainder of the paper, we focus on Mahimahis
cellular traces.

A key property of Vidaptive is that dummy traffic decouples link utilization from the
video encoders decisions. As a result, varying P does not impact overall utilization, which
remains consistently higher than GCC (Fig. 11a). By increasing P , Vidaptive chooses higher
video bitrates (Fig. 11b) and quality (Fig. 11e), which correspondingly reduces the fraction
of dummy traffic (Fig. 11c). However, higher P values also push Vidaptive to prioritize

NINeS 2026



9:16 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

GCC P=10 P=15 P=20 P=33 Average

0

1

2

3

4

5

6

7

8

Ut
iliz

at
io

n 
(M

bp
s)

(a) Link Utilization

0

1

2

3

4

5

Vi
de

o 
Bi

tra
te

 (M
bp

s)
(b) Video Bitrate

20

30

40

50

60

70

Pa
dd

in
g 

Ra
tio

 (%
)

(c) Padding Ratio

102

103

104

P9
5 

La
te

nc
y 

(m
s)

(d) Log P95 Latency

0

20

40

60

80

100
VM

AF

(e) VMAF

14

16

18

20

22

24

26

28

30

Fr
am

e 
Ra

te
 (f

ps
)

(f) Frame Rate

Figure 11 Performance comparison of GCC and Vidaptive with different values of target frame
service time P . Changing P does not affect link utilization since Vidaptive decouples utilization
from video. Increasing P raises video bitrate and reduces padding but also increases P95 latency
and frame skipping. Whiskers indicate the 5th and 95th percentiles (P5, P95); boxes show the
interquartile range (P25–P75); the horizontal line marks the median (P50); and the bullet (•)
denotes the mean.

video bitrate over latency, raising P95 latency (Fig. 11d)though it still remains lower than
GCC. The frame rate remains mostly stable, but at P = 33 ms, frame skipping becomes
more frequent, slightly reducing frame rate (Fig. 11f).

Looking at the tension between the video and padding bitrates, an important question
arises: Can we reduce dummy traffic by increasing the video bitrate, without paying a
latency penalty? The answer depends on the variability of the underlying link.

To illustrate, consider an idealized setting. Suppose the transport layer has perfect,
instantaneous knowledge of link capacity C(t), and the encoder is ideal, producing noise-
free frame sizes immediately (i.e., σ(t) = 0 in Equation 1). If the encoder target bitrate is
αC(t), for a fixed α, it generates a frame of size αC(t)∆, where ∆ = 33ms is the frame
interval. The frames transmission time, T (α, t), is:

∫ t+T (α,t)
t

C(τ) dτ =
frame size

α C(t) · 33 ms
(4)

Given a link trace, we know C(t). Using this, we computed T (α, t) for α ∈ {0.5, 0.75, 0.9, 1.0}
over t ∈ [0, 2 min] across all traces. Fig. 12 plots the distribution of P95 values of T (α, t),
where each bar aggregates all t and all traces for a fixed α. As α increasesi.e., as the encoder
consumes a larger fraction of available capacitythe P95 of T also rises. This reveals a fun-
damental property: even with perfect knowledge of C(t) and an ideal encoder, tail latency
is lower-bounded by the links intrinsic variability.



Pantea Karimi et al. 9:17

0

50

100

150
P9

5 
T 

(m
s)

= 0.5
= 0.75

= 0.9
= 1

Average

Figure 12 Relationship of target bitrate factor α and the 95th percentile (P95) of frame trans-
mission time T , with an ideal encoder. Larger α values allocate more link capacity to video but
shift P95 latencies higher. This illustrates an intrinsic tradeoff between maximizing video bitrate
and controlling latency under highly variable network conditions.

Consequently, to bound tail latency, Vidaptive must adopt smaller α values on highly
variable links, which in turn reduces the video bitrate. Because overall link utilization
remains the same under the tight feedback loop (Fig. 11a), Vidaptive compensates by filling
the remaining headroom with dummy traffic (Fig. 11c). This dummy traffic allows the CCA
to track capacity accurately, but since it is sent only when no video frames are ready, it
has negligible effect on frame latency (§3.1). For example, Fig. 12 shows to keep the frame
transmission times below 50 ms, α must be set to 0.5, which translates into 50% utilizing the
link with video and 50% with padding traffic. Under such highly variable link conditions, and
given strict latency thresholds, dummy traffic cannot be reduced beyond a certain limitdoing
so would compromise accurate link estimation. We find this quite interesting, that even with
the cost of high padding ratios, Vidaptive is able to achieve better video quality and latency
compared to GCC thanks to the tight feedback loop of the congestion controller.

5.4 Understanding Vidaptive’s Design
Using a Different Congestion Controller. To show that Vidaptive can work with
other delay-sensitive window-based CCA, we replaced Copa with RoCC [4]. Fig. 13a shows
the VMAF and Fig. 13b shows the latency CDFs of Vidaptive (RoCC) compared to GCC.
Vidaptive (RoCC) follows similar trends as Vidaptive (Copa) and improves the quality in all
percentiles compared to GCC. Compared to GCC, Vidaptive (RoCC) increases the median
latency from 48 ms to 77 ms while reducing the P95 of latency from 3.9 s to 1.9 s. Compared
to GCC, Vidaptive (RoCC) increases the median VMAF from 36 to 56 and the average
VMAF from 39% to 53%. Copa overall has a lower latency than RoCC, so we choose it as
the default CCA in Vidaptive.
Ablation Study. To understand the impact of different components in Vidaptive’s design,
we evaluate the benefits of adding dummy traffic at the transport layer (§3.1), having the
latency safeguards (§3.2), and running the encoder bitrate selection approach described in
§3.3. Fig. 18 shows the distribution of metrics over all the traces and five videos for different
system variations. P is selected as 33 ms for the rest of experiments.

In “Copa,” we replace GCC with a window-based congestion control algorithm but keep
the remaining modules similar to GCC. Copa is more aggressive than GCC in utilizing

NINeS 2026



9:18 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

(a) VMAF CDF (b) Latency CDF

Figure 13 CDF of frame VMAF and latency across all the 1M frames. Compared to GCC,
Vidaptive (RoCC) achieves higher VMAF while getting lower tail latency. Vidaptive (RoCC) has
a similar performance to Vidaptive (Copa).

bandwidth, improving the average link utilization and video bitrate by almost 3×. However,
this aggressiveness causes an average P95 latency of 9 seconds. The frame rate for all schemes
using Copa as CCA reduces because Copa’s window-based mechanism, unlike GCC, blocks
frame transmissions when network is congested.

In “Vidaptive w/o Dummy,” we removed dummy traffic (§3.1) from Vidaptive. Fig. 15
shows that removing the dummy traffic reduces the average video bitrate from 2 Mbps to
1.4 Mbps and its P95 from 5.1 Mbps to 2.8 Mbps. However, the average P95 latency and
the frame rate do not change significantly compared to Vidaptive: the average P95 latency
decreases by only 5.6% when dummy traffic is removed (from 1894 ms to 1788 ms). This
slight increase results from CCA keeping a small queue in the network when it uses dummy
traffic that causes a bigger spike (and P95 latency) when the network degrades abruptly. This
result indicates that the dummy traffic has a negligible impact on latency but it improves
the video bitrate by helping CCA maintain its loop to discover bandwidth faster.

In “Vidaptive w/o Latency,” we disable the latency safeguards on top of Vidaptive. Dis-
abling latency knobs hurts the P95 latency (Fig. 16) and increases it compared to Vidaptive
(1894 ms vs. 6087 ms on average and 8.6 s vs. 26 s in P95). Since the latency safeguards
pause encoding of frames, the overall frame rate and video bitrate increases without them.

In “Vidaptive w/o Bitrate Selection,” we disable the encoder bitrate selection of Vid-
aptive (module choosing α in §3.3). Without this mechanism, the CCA’s link estimate is
directly given to the encoder, which results in a higher video bitrate and latency in highly
variable links. When CC-Rate is fed directly to the encoder, it attempts to produce frames
that take 33 ms to be sent at the current link rate. However, if the link rate drops, such an
encoded frame takes more than 33 ms to be transmitted. This, in turn, triggers the latency
safeguards that drop the next frames to prevent the latency from increasing. As a result,
the frame rate in “Vidaptive w/o Bitrate Selection” is lower than Vidaptive.

Finally, in “Vidaptive”, the system aims to find the right target video bitrate for the
encoder as described in §3.3. Because this system balances frame latency and frame quality,
the video bitrate is slightly lower than “Vidaptive w/o Latency” and “Copa” but achieves
better latency. The utilization is comparable across all schemes with dummy traffic since it
pads any encoder output to match the link rate.

Another system variation is disabling the dummy traffic and removing the pacer. In-



Pantea Karimi et al. 9:19

GCC
Copa
Vidaptive w/o Dummy

Vidaptive w/o Latency
Vidaptive w/o Bitrate Selection

Vidaptive
Average

0

1

2

3

4

5

6

7

8

Ut
iliz

at
io

n 
(M

bp
s)

Figure 14 Link Utilization

0

1

2

3

4

5

6

7

8

Vi
de

o 
Bi

tra
te

 (M
bp

s)
Figure 15 Video Bitrate

0.05
0.1

1

10
20
3040

P9
5 

La
te

nc
y 

(s
)

Figure 16 Log of P95 Latency

12

14

16

18

20

22

24

26

28

30
Fr

am
e 

Ra
te

 (f
ps

)

Figure 17 Frame Rate

Figure 18 Performance comparison of GCC and different Vidaptive components. “Copa” im-
proves video bitrate and utilization but hurts frame latency. Dummy traffic improves video bitrate.
“Vidaptive w/o Latency” shows that latency knobs reduce the latency by seconds. Vidaptive has
higher frame rate and lower latency by using encoder bitrate selection than without it. Since
schemes with Copa as CCA do not send frames in outages, they have lower frame rate than GCC.

stead of controlling the frame service time, this system applies the bitrate selection scheme
described in §3.3 on the measured one-way frame latencies. We call this “Latency Optimizer”.
It picks the next target bitrate based on the measured frame latencies and corresponding
target bitrates. Fig. 19 compares the Latency Optimizer, Vidaptive, and GCC for λ = 0.5
and λ = 0.9. For λ = 0.9. “Latency Optimizer” opts to control P90 of measured laten-
cies, and although the latency values are low, the quality drops significantly even compared
to GCC. For λ = 0.5, “Latency Optimizer” targets a median latency of 33 ms, but the tail
latency increases compared to Vidaptive and GCC without meaningful gains in quality. This
approach fails because bitrate selection alone reacts too slowly to rapid link variations (issue
similar to §2.1): it relies on latency samples that arrive only once every 33 ms, making it
sluggish to raise the bitrate when bandwidth increases and equally slow to cut bitrate during
sharp capacity drops.

Comparison with Salsify. Salsify’s design takes advantage of a specialized video codec
that allows it to discard already-encoded frames when necessary. Since the peak performance

NINeS 2026



9:20 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

Figure 19 CDF of VMAF and latency for all the frames. The alternative latency optimizer
scheme performs worse than Vidaptive.

of this encoder was 24 FPS at 720p, we focus specifically on videos of this size and frame
rate. Fig. 20 shows the CDF of VMAF and latency across all the frames. Although Salsify
exhibits a higher quality (Fig. 20a and Fig. 20c), it also experiences much higher latency
compared to Vidaptive (Fig. 20b). The median latency for Salsify is 119 ms, and the average
latency is 1211 ms across all the frames 6. However, Vidaptive has a median latency of
67 ms, 77 ms, 117 ms and average latency of 468 ms, 535 ms, and 622 ms for P = 20, 33, 66
respectively. Fig. 20d shows the P95 latency distribution across all the videos and traces.
Salsify experiences seconds higher P95 latency than Vidaptive.

Fig. 20e shows the frame rate for Salsify and Vidaptive. Salsify’s primary means of
latency control is dropping frames, which manifests itself in lower frame rate. As P increases
in Vidaptive, we also have to skip more frames to keep the latency in control.

We also evaluated the effect of different parameter choices in Appendix B. As λ (the
latency percentile used in §3.3) increases, both video bitrate and latency decrease. Increasing
the pacer pause threshold (τ in §3.2) leaves the video bitrate unchanged, but raises the P95
latency and lowers the frame rate.

6 Related Work

Congestion Control. End-to-end congestion control approaches can be broadly categor-
ized into delay-based [8, 7, 31, 36, 28, 55, 11] or loss-based (buffer-filling) schemes [17, 23, 20].
Delay-based protocols minimize queuing by adjusting their rate based on measured queuing
delay [44, 28, 8] or delay gradients [11, 55, 36]. Loss-based protocols send at the highest
rate possible until packet loss or congestion signals are observed. Some schemes, such as
BBR [10], use model-based bandwidth and delay estimation and do not fit neatly into
either category. Hybrid approaches like Nimbus [22] switch between delay-based and loss-
based modes to improve fairness while maintaining high utilization. Congestion control for
application-limited flows [19, 26] is particularly relevant to interactive video traffic, which
is generated at intervals tied to the frame rate. Schemes such as GCC [12], Pudica [46],
Mowgli [5], SCReAM [30], NADA [60], SQP [42], and RL-based approaches [58, 56, 57] are
specifically designed for real-time video.

6 We are evaluating Salsify on a larger set of traces than Salsify’s paper.



Pantea Karimi et al. 9:21

(a) VMAF CDF (b) Latency CDF

Salsify P=20 P=33 P=66 Average

0

1

2

3

4

5

6

7

8

9

Vi
de

o 
Bi

tra
te

 (M
bp

s)

(c) Video Bitrate

0.1

1

10
20

P9
5 

La
te

nc
y 

(s
)

(d) Log P95 Latency

12

15

18

21

24

Av
g 

Fr
am

e 
Ra

te
 (f

ps
)

(e) Frame Rate

Figure 20 Comparison of Salsify and Vidaptive across all traces and videos. Salsify exhibits
higher average P95 latencies and lower frame rate. Although Salsify can achieve higher quality, it
incurs substantially higher latency than Vidaptive.

Video Systems. Many real-time video applications rely on Web Real-time Communica-
tion (WebRTC) [48], whose built-in controller GCC [12] adjusts rates using delay gradients.
While effective at avoiding queues, GCCs conservative ramp-up and sensitivity to encoder
variability often cause under-utilization or latency spikes. Salsify [21] tackled this mismatch
by modifying codecs to generate multiple frame versions and picking one that fits current
capacity, but codec changes limit deployability. Vidaptive achieves similar alignment of
encoder output and network capacity without codec modifications. Adaptive bitrate al-
gorithms [34, 25, 53, 45, 51, 57, 59] solve a related problem for on-demand video, but they
operate under more relaxed latency constraints and are not directly suitable for real-time
interactive applications

NINeS 2026



9:22 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

7 Discussion

Tight feedback loop drives responsiveness. We showed responsiveness does not come
from specialized controllers, but from preserving RTT-scale feedback. Maintaining this
loopeven with paddingenables fast and more accurate bandwidth estimation.
Vidaptive generalizes beyond WebRTC. Although our prototype is built atop WebRTC,
the idea of reshaping an application-limited flow into a backlogged one is stack-agnostic, and
can be extended to cloud gaming, remote desktop, and XR where variability disrupts feed-
back loops.
Dummy traffic is both a strength and can be a limitation. Padding preserves
the tight control loop behind Vidaptives latency gains, but it consumes bandwidth and
may drain device battery. Operators must weigh these costs against qualitylatency benefits.
Future work could provide knobs to bound dummy traffic or schedule it judiciously based on
the rate controller’s uncertainty about the network state. Padding could also be repurposed
for FEC, recovery keyframes, or telemetry, reducing overhead.
The latencyquality frontier. Even with perfect link knowledge, encoder and network
variability impose limits on tail latency. Vidaptive exposes a new frontier and a tunable
tradeoff between quality and latency, but breaking through this frontier may require tighter
codeccongestion control integration.

8 Conclusion

This paper introduces Vidaptive, a new real-time video rate control framework that re-
sponds quickly to network variability without requiring encoder or hardware modifications.
Our evaluation shows that Vidaptive improves video quality while lowering tail latency, out-
performing existing controllers like GCC. Vidaptive uses a delay-based CCA as the link rate
estimator. To let the CCA operate effectively, it reshapes application-limited video traffic
into a backlogged flow by injecting “dummy” packets. It also monitors frame latencies to
adjust the encoders target bitrate online to match the video bitrate to the link capacity.
A key lesson from this work is that maintaining a tight RTT-scale feedback looppreserved
through paddingis essential for responsiveness and latency control.



Pantea Karimi et al. 9:23

References
1 Pantheon of Congestion Control: Calibrated emulator for the real path from AWS Brazil

to Colombia cellular. https://pantheon.stanford.edu/result/6849/, 2020. (accessed on
2024-02-01).

2 Pantheon of Congestion Control: Calibrated emulator for the real path from Mexico cellular
to AWS California. https://pantheon.stanford.edu/result/6848/, 2020. (accessed on
2024-02-01).

3 Pantheon of Congestion Control: Calibrated emulator for the real path from Nepal to AWS
India. https://pantheon.stanford.edu/result/6847/, 2020. (accessed on 2024-02-01).

4 Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan Seshan. Auto-
mating network heuristic design and analysis. In Proceedings of the 21st ACM Workshop on
Hot Topics in Networks, pages 8–16, 2022.

5 Neil Agarwal, Rui Pan, Francis Y Yan, and Ravi Netravali. Mowgli: Passively learned rate
control for {Real-Time} video. In 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI 25), pages 579–594, 2025.

6 Venkat Arun. Copa’s Implementation. https://github.com/venkatarun95/genericCC/
blob/master/markoviancc.cc.

7 Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based congestion control for the
internet. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 329–342, 2018.

8 Lawrence S. Brakmo and Larry L. Peterson. Tcp vegas: End to end congestion avoidance on
a global internet. IEEE Journal on selected Areas in communications, 13(8):1465–1480, 1995.

9 Dean Bubley. 2015 Q1 Update: WebRTC Market Status & Forecasts Report. https://
disruptivewireless.blogspot.com/p/blog-page_30.html, 2015. Accessed: 2024-02-02.

10 Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.
Bbr: Congestion-based congestion control. Queue, 14(5):20–53, 2016.

11 Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis and design
of the google congestion control for web real-time communication (webrtc). In Proceedings of
the 7th International Conference on Multimedia Systems, pages 1–12, 2016.

12 Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis and design
of the google congestion control for web real-time communication (webrtc). In Proceedings of
the 7th International Conference on Multimedia Systems, pages 1–12, 2016.

13 Cisco. Cisco visual networking index: Forecast and trends, 20172022. https://www.
cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/
Global_Device_Growth_Traffic_Profiles.pdf, 2019. Accessed: 2025-09-25.

14 Andy Cockburn, Carl Gutwin, and Saul Greenberg. How much faster is fast enough? user
perception of latency & latency improvements in direct and indirect touch. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 2291–2300.
ACM, 2015. doi:10.1145/2702123.2702300.

15 Andy Cockburn, Carl Gutwin, Philip Quinn, and et al. Are 100 ms fast enough? characterizing
latency perception thresholds in mouse-based interaction. In Proceedings of the ACM CHI
Conference on Human Factors in Computing Systems (CHI), pages 433–444. ACM, 2017.
doi:10.1145/3025453.3025591.

16 Webrtc developers. https://webrtc.googlesource.com/src/+/
a2f5d45b81c6ae5632af0c4c45e8988f330af7f1, December 2022.

17 Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira. PCC: Re-
architecting congestion control for consistent high performance. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 395–408, 2015.

18 Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Mi-
chael Schapira. Pcc vivace: Online-learning congestion control. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 2018), pages 343–356, 2018. URL:
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-dong.pdf.

NINeS 2026

https://pantheon.stanford.edu/result/6849/
https://pantheon.stanford.edu/result/6848/
https://pantheon.stanford.edu/result/6847/
https://github.com/venkatarun95/genericCC/blob/master/markoviancc.cc 
https://github.com/venkatarun95/genericCC/blob/master/markoviancc.cc 
https://disruptivewireless.blogspot.com/p/blog-page_30.html
https://disruptivewireless.blogspot.com/p/blog-page_30.html
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
https://doi.org/10.1145/2702123.2702300
https://doi.org/10.1145/3025453.3025591
https://webrtc.googlesource.com/src/+/a2f5d45b81c6ae5632af0c4c45e8988f330af7f1
https://webrtc.googlesource.com/src/+/a2f5d45b81c6ae5632af0c4c45e8988f330af7f1
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-dong.pdf


9:24 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

19 G. Fairhurst, A. Sathiaseelan, and R. Secchi. Updating tcp to support rate-limited traffic.
RFC 7661, Internet Engineering Task Force, October 2015. URL: https://www.rfc-editor.
org/info/rfc7661.

20 Sally Floyd, Tom Henderson, and Andrei Gurtov. Rfc3782: The newreno modification to
tcp’s fast recovery algorithm, 2004.

21 Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and Keith Win-
stein. Salsify: Low-latency network video through tighter integration between a video codec
and a transport protocol. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 267–282, 2018.

22 Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana, Mohammad Alizadeh,
and Hari Balakrishnan. Elasticity detection: A building block for internet congestion control.
In Proceedings of the ACM SIGCOMM 2022 Conference, pages 158–176, 2022.

23 Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed tcp variant.
SIGOPS Oper. Syst. Rev., 42(5):6474, jul 2008. doi:10.1145/1400097.1400105.

24 Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pages 2366–2369. IEEE, 2010.

25 Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. A
buffer-based approach to rate adaptation: Evidence from a large video streaming service. In
Proceedings of the 2014 ACM conference on SIGCOMM, pages 187–198, 2014.

26 Jana Iyengar. Cubic Quiescence: Not So Inactive. https://www.ietf.org/proceedings/94/
slides/slides-94-tcpm-8.pdf, 2015.

27 Van Jacobson. Congestion avoidance and control. ACM SIGCOMM computer communication
review, 18(4):314–329, 1988.

28 Cheng Jin, David X Wei, and Steven H Low. Fast tcp: motivation, architecture, algorithms,
performance. In IEEE INFOCOM 2004, volume 4, pages 2490–2501. IEEE, 2004.

29 Mathias Johanson. Adaptive forward error correction for real-time internet video. In Proceed-
ings of the 13th Packet Video Workshop, Nantes, France, pages 1–9. Citeseer, 2003.

30 Ingemar Johansson and Zaheduzzaman Sarker. Self-Clocked Rate Adaptation for Multimedia
(SCReAM). RFC 8298 (Experimental), December 2017.

31 Changhyun Lee, Chunjong Park, Keon Jang, Sue B Moon, and Dongsu Han. Accurate latency-
based congestion feedback for datacenters. In USENIX Annual Technical Conference, pages
403–415, 2015.

32 Zhi Li, Anthony Aaron, Ioannis Katsavounidis, Anush Moorthy, and
Megha Manohara. Toward a practical perceptual video quality met-
ric. Netflix Tech Blog, 2016. URL: https://netflixtechblog.com/
toward-a-practical-perceptual-video-quality-metric-653f208b9652.

33 Cicco Luca De Gaetano Carlucci, and Saverio Mascolo. Experimental investigation of the
google congestion control for real-time flows. In Proceedings of the ACM SIGCOMM 2013
Workshop on Network and System Support for Games (NetGames 13), page 2126, 2013. doi:
10.1145/2491172.2491182.

34 Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming
with pensieve. In Proceedings of the conference of the ACM special interest group on data
communication, pages 197–210, 2017.

35 Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry Liu, and
Mingwei Xu. Achieving consistent low latency for wireless real-time communications with the
shortest control loop. In Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM
’22, page 193206, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3544216.3544225.

36 Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely: Rtt-
based congestion control for the datacenter. ACM SIGCOMM Computer Communication
Review, 45(4):537–550, 2015.

https://www.rfc-editor.org/info/rfc7661
https://www.rfc-editor.org/info/rfc7661
https://doi.org/10.1145/1400097.1400105
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://doi.org/10.1145/2491172.2491182
https://doi.org/10.1145/2491172.2491182
https://doi.org/10.1145/3544216.3544225
https://doi.org/10.1145/3544216.3544225


Pantea Karimi et al. 9:25

37 Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert. Congestion control using fec for con-
versational multimedia communication. In Proceedings of the 5th ACM Multimedia Systems
Conference, pages 191–202, 2014.

38 Netflix. VMAF - Video Multi-Method Assessment Fusion. https://github.com/Netflix/
vmaf, 2016.

39 Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James Mick-
ens, and Hari Balakrishnan. Mahimahi: Accurate record-and-replay for http. In Usenix annual
technical conference, pages 417–429, 2015.

40 Abhishek Prasad, Anh Le, Sanjay Jha, and Richard Gibbens. itelescope: Intelligent video
telemetry and classification in real-time using software defined networking. In 2018 4th IEEE
Conference on Network Softwarization (NetSoft), pages 401–409. IEEE, 2018. doi:10.1109/
NETSOFT.2018.8460000.

41 Manish Ravinet. Mahimahi Traces. https://github.com/ravinet/mahimahi/tree/master/
traces, 2016.

42 Devdeep Ray, Connor Smith, Teng Wei, David Chu, and Srinivasan Seshan. Sqp: Congestion
control for low-latency interactive video streaming. arXiv preprint arXiv:2207.11857, 2022.

43 Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan, Martin Ellis,
and KV Rashmi. Tambur: Efficient loss recovery for videoconferencing via streaming codes.
In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23),
pages 953–971, 2023.

44 Sea Shalunov, Greg Hazel, Janardhan Iyengar, and Mirja Kuehlewind. Low extra delay
background transport (ledbat). Technical report, 2012.

45 Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-optimal bitrate
adaptation for online videos. IEEE/ACM Transactions On Networking, 28(4):1698–1711,
2020.

46 Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu, Longwei Jiang, Chenren Xu, Cong
Zhao, Xuesong Yang, Jianjun Xiao, Xin Liu, Changxi Zheng, Jing Wang, and Honghao Liu.
Pudica: Toward Near-Zero queuing delay in congestion control for cloud gaming. In 21st
USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), pages
113–129, Santa Clara, CA, April 2024. USENIX Association. URL: https://www.usenix.
org/conference/nsdi24/presentation/wang-shibo.

47 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

48 WebRTC. https://webrtc.org/.
49 WebRTC Developers. WebRTC Congestion Control Probe Controller Source Code.

https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/
webrtc/modules/congestion_controller/probe_controller.cc, 2023.

50 Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic forecasts achieve high
throughput and low delay over cellular networks. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 459–471, 2013.

51 Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,
Philip Alexander Levis, and Keith Winstein. Learning in situ: a randomized experiment
in video streaming. In NSDI, volume 20, pages 495–511, 2020.

52 Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis, and
Keith Winstein. Pantheon: the training ground for internet congestion-control research. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, 2018.

53 Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic approach
for dynamic adaptive video streaming over http. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, pages 325–338, 2015.

54 YouTube. Dynamic video. https://www.youtube.com/watch?v=19ikl8vy4zs, 2023.

NINeS 2026

https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf
https://doi.org/10.1109/NETSOFT.2018.8460000
https://doi.org/10.1109/NETSOFT.2018.8460000
https://github.com/ravinet/mahimahi/tree/master/traces
https://github.com/ravinet/mahimahi/tree/master/traces
https://www.usenix.org/conference/nsdi24/presentation/wang-shibo
https://www.usenix.org/conference/nsdi24/presentation/wang-shibo
https://webrtc.org/
https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/webrtc/modules/congestion_controller/probe_controller.cc
https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/webrtc/modules/congestion_controller/probe_controller.cc
https://www.youtube.com/watch?v=19ikl8vy4zs


9:26 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

55 Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and Carmelita Görg.
Adaptive congestion control for unpredictable cellular networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages 509–522, 2015.

56 Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li, Guangping Wang, Xinyu Zhang,
Huadong Ma, Leilei Wu, Aiyun Chen, and Changhui Wu. Loki: improving long tail per-
formance of learning-based real-time video adaptation by fusing rule-based models. In Pro-
ceedings of the 27th Annual International Conference on Mobile Computing and Networking,
MobiCom ’21, page 775788, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3447993.3483259.

57 Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu, Cong Li, Xinyu Zhang,
Huadong Ma, and Xiaojiang Chen. Onrl: improving mobile video telephony via online rein-
forcement learning. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–14, 2020.

58 Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen Meng, Xinyu
Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. Learning to coordinate video co-
dec with transport protocol for mobile video telephony. In The 25th Annual International
Conference on Mobile Computing and Networking, MobiCom ’19, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3300061.3345430.

59 Chao Zhou, Wenjun Wu, Dan Yang, Tianchi Huang, Liang Guo, and Bing Yu. Deadline and
priority-aware congestion control for delay-sensitive multimedia streaming. In Proceedings of
the 29th ACM International Conference on Multimedia, pages 4740–4744, 2021.

60 Xiaoqing Zhu, Rui Pan, Marcello Ramalho, Sumit Jones, Yutaka Tokuda, Raja Subramanian,
and Philip Zhu. Nada: A unified congestion control scheme for real-time media. In Proceedings
of the IEEE Packet Video Workshop, 2013.

https://doi.org/10.1145/3447993.3483259
https://doi.org/10.1145/3300061.3345430


Pantea Karimi et al. 9:27

(a) Ad-hoc probing behavior in WebRTC on a
periodic link alternating between 2 Mbps and
500 Kbps every 40s. Padding traffic is used

when GCC’s estimate drops sharply (t=40s),
but not when capacity increases (t=80s).

(b) Copa with dummy traffic converges faster
to available capacity and maintains a smoother

steady-state video bitrate.

=0.5 =0.7 =0.9 =0.95 Average

0

1

2

3

4

5

6

Vi
de

o 
Bi

tra
te

 (M
bp

s)

(a) Video Bitrate

0.1

1

10

P9
5 

La
te

nc
y 

(s
)

(b) Log P95 Latency

0

10

20

30

40

50

60

Pa
dd

in
g 

Ra
tio

 (%
)

(c) Padding Ratio

12
14
16
18
20
22
24
26
28
30

Fr
am

e 
Ra

te
 (f

ps
)

(d) Frame Rate

Figure 22 Effect of λ on Vidaptive’s performance. Increasing the value of λ increases the frame
rate and padding ratio and decreases the video bitrate and latency on fluctuating links.

A Probing Mechanisms

Fig. 21a displays the performance of probing mechanism within GCC [49]. This probing
controller typically sends probes (padding) in three scenarios: 1) When initiating a connec-
tion or after a significant idle period. 2) Upon detecting a potential increase in available
bandwidth. 3) Periodically, as part of maintaining an up-to-date estimate of the network
conditions, especially when dynamic changes in the network are suspected. We tested this
probing mechanism within Google’s WebRTC on a link alternating between 2 Mbps and
500 Kbps every 40 seconds. The padding traffic is only sent when GCC significantly reduces
the video bitrate (t=40s), but it does not help with bandwidth discovery (t=80s) when the
link rate increases. This approach to sending the padding traffic has essentially not provided
much benefit for GCC.

B Extended Evaluation

More Metrics. Fig. 24 shows the other metrics for the experiment in the paper. The
trends are consistent. Vidaptive has better video quality compared to GCC and PCC.
Effect of λ. We evaluate the impact of the parameter λ, which dictates what fraction of
the frame service times we want to tightly bound on all traces and 5 videos. Fig. 22 shows
the distribution of the metrics across all the videos and traces with λ = 0.5, 0.7, 0.9, 0.95.
When λ increases, the bitrate selection in §3.3 is stricter on the frame service time values

NINeS 2026



9:28 Tight Loops, Smooth Streams: Responsive Congestion Control for Real-Time Video

=33 =165 =330 Average

0
1
2
3
4
5
6
7
8
9

 U
til

iza
tio

n 
(M

bp
s)

(a) Link Utilization

0

1

2

3

4

5

6

 V
id

eo
 B

itr
at

e 
(M

bp
s)

(b) Video Bitrate

0.1

1

10

P9
5 

La
te

nc
y 

(s
)

(c) Log P95 Latency

14

16

18

20

22

24

26

28

30

Fr
am

e 
Ra

te
 (f

ps
)

(d) Frame Rate

Figure 23 Effect of pacer queue pause threshold (τ) on Vidaptive. As τ increases, the frame rate
increases because fewer frames are skipped, consequently, P95 latency increases. The video bitrate
does not change much since the encoder bitrate selector keeps the frame service time under control.

(a) PSNR for Pantheon
traces

(b) SSIM for Pantheon
traces (c) PSNR for Cellular traces

Figure 24 CDF across all the frames.

and picks more conservative ones. Hence, the video bitrate decreases (Fig. 22a), and the
latency decreases as well (Fig. 22b). Since Vidaptive uses dummy traffic, changes in the
video bitrate do not affect CCA estimations and consequently do not change the overall
link utilization. Therefore, increasing λ increases the padding ratio. The average frame rate
increases (Fig. 22d) as more frames are permitted since their latency is below the threshold.
Pacer Queue Pause Threshold (τ). Fig. 23 shows how the pacer queue pause threshold,
τ (§3.2), affects the performance of Vidaptive. Vidaptive skips the current frame if the
previous frame has been more than τ in the pacer queue. We tested Vidaptive with τ =
33, 165, 330 ms. Changing τ does not change the network utilization (Fig. 23a) because
dummy traffic decouples congestion control from the encoder, padding any encoder output
to match the link rate. The encoder bitrate selection logic computes the target bitrate based
on the actual frame service time values, so changing τ does not affect the video bitrate much
(Fig. 23b) as frame service time does not count for the queueing delay frames experience
before they’re sent. As τ increases, the frame rate increases (Fig. 23d) because fewer frames
are skipped, causing an increase in the P95 latency (Fig. 23c).
Vidaptive selects τ = 33ms as it has low latency and relatively high frame rate compared
to GCC.

C Example of Effect of Dummy Traffic

To quantify the effect of dummy traffic in more detail, we disable the changes we made to
the target bitrate selection logic and focus on transport layer changes (§3.1). In Fig. 21b,
we emulate a link that starts with 5 Mbps of bandwidth for 40 s, drops to 2 Mbps for the



Pantea Karimi et al. 9:29

Video URL Category Avg. Bitrate (Kbps)

Video 1 Ice Skating 4127
Video 2 Wild Animals Collection 4883
Video 3 High-motion Cooking 7278
Video 4 YouTube Vlogger 3025
Video 5 Animated Movie 2352
Video 6 Videocall Stock Footage 1751
Video 7 Press Conference 1410
Video 8 YouTube Vlogger 1152
Video 9 Music Video 4227
Video 10 Music Video 4144
Video 11 YouTube Vlogger 2199
Video 12 YouTube Vlogger 1379
Video 13 Art 3636
Video 14 Low-motion Cooking 2502
Video 15 Football 6256
Video 16 Crafts 2532
Video 17 Press Conference 1847
Video 18 Screen Sharing / Education 40
Video 19 Live Music 4184
Video 20 Weather Forecast 4754

Table 1 Details of our dataset. All videos are at 1920×1080 at 30 FPS and are 4 min long.

next 40 s before jumping back to 5 Mbps. We compare the video and padding bitrate for
“Copa” to Copa with dummy traffic (“Copa+Dummy”). Copa takes 6 s to match the link
rate, while Copa+Dummy takes 2 s. The dummy traffic is sent only when the video traffic
cannot match the link capacity when it suddenly opens up (around 0s and 80s). Copa does
not match capacity as fast because its rate on the wire is determined by the slow-reacting
encoder (§2). Further, “Copa+Dummy” has a more stable steady-state bitrate than “Copa”
because the dummy traffic decouples the CCA’s feedback from the video encoder’s variable
output, enabling more accurate link capacity estimation.

D Videos

Dataset Information Tab. 1 summarizes the information of all the videos that we used in
the experiments. The videos are all collected from YouTube and cover a different range of
motions and settings.

NINeS 2026

https://www.youtube.com/watch?v=6bNOnXTe4Ok
https://www.youtube.com/watch?v=Zv11L-ZfrSg
https://www.youtube.com/watch?v=sLXWHiIbcIw
https://www.youtube.com/watch?v=8n1OU9p3fhM
https://www.youtube.com/watch?v=vgezcnqfkdM
https://www.youtube.com/watch?v=epfpBdNDljk
https://www.youtube.com/watch?v=ULRlh8kAGf8
https://www.youtube.com/watch?v=jpvzpzBYwEk
https://www.youtube.com/watch?v=OPf0YbXqDm0
https://www.youtube.com/watch?v=lp-EO5I60KA
https://www.youtube.com/watch?v=1XfV40xRq2o
https://www.youtube.com/watch?v=hxaFQOac6kM
https://www.youtube.com/watch?v=wk9L1N9bRRE
https://www.youtube.com/watch?v=bRX2MqdsrNw
https://www.youtube.com/watch?v=vMEGR3sf3qo
https://www.youtube.com/watch?v=FDQ-sDDqWvk
https://www.youtube.com/watch?v=hkmnhcsvueE
https://www.youtube.com/watch?v=KovN7WKI9Y0
https://www.youtube.com/watch?v=pfBkzWNQTpI
https://www.youtube.com/watch?v=z2vy1is3aY4

	1 Introduction
	2 Motivation and Key Ideas
	2.1 The Problem
	2.2 Our Solution

	3 Vidaptive Design
	3.1 Transport Layer
	3.2 Safeguarding against Latency Spikes
	3.3 Handling Variability

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Vidaptive improves Video Quality and Tail Latency.
	5.3 Vidaptive navigates Quality and Latency Tradeoff.
	5.4 Understanding Vidaptive's Design

	6 Related Work
	7 Discussion
	8 Conclusion
	A Probing Mechanisms
	B Extended Evaluation
	C Example of Effect of Dummy Traffic
	D Videos

