Contracts: A unified lens on congestion control

robustness, fairness, congestion, and generality
Anup Agarwal @&
Carnegie Mellon University, USA

Venkat Arun &
University of Texas at Austin, USA

Srinivasan Seshan &
Carnegie Mellon University, USA

—— Abstract

Congestion control algorithms (CCAs) operate in partially observable environments. They cannot
directly observe link capacities or competing flows. To share network resources fairly, CCAs (im-
plicitly) communicate fair shares through observable signals. For instance, Reno encodes the fair
share as oc 1/4/1oss rate. We call such communication mechanisms as contracts. We find that the
choice of contract fixes key steady-state performance metrics, including (1) robustness to errors in
congestion signals, (2) fairness, (3) amount of congestion (e.g., delay, loss), and (4) generality (e.g.,
range of supported link rates). This leads to fundamental tradeoffs between these metrics. Further,
we show that many contracts lead to starvation (extreme unfairness), and must be avoided. Hence,
contracts are a powerful way to analyze tradeoffs and avoid pitfalls in CCA design and analysis.
We empirically validate our findings and discuss their implications on CCA design and network
measurement.

2012 ACM Subject Classification Networks — Transport protocols; Networks — Network control
algorithms

Keywords and phrases Transport Protocols, Congestion Control, Fairness
Digital Object Identifier 10.4230/OASIcs.NINeS.2026.8

Funding This work was supported in part by NSF grants CNS-2403026, CNS-2212102, CNS-2212390,
CNS-2403026, and CCF-2422130.

Acknowledgements We are grateful to the anonymous reviewers of IMC 2025, CONEXT 2025, and
NINeS 2026, and our shepherd Radhika Mittal for feedback that helped improve our paper.

1 Introduction

Congestion control algorithms (CCAs) play a critical role in ensuring fair and efficient band-
width allocation. Despite this, reasoning about their fairness has been ad hoc. Early CCAs
were designed to avoid congestion collapse, and their fairness properties were analyzed retro-
spectively [16, 61, 43, 35]. With the rise of interactive applications, newer CCAs prioritized
local performance metrics like latency and convergence time, where traditional CCAs per-
formed poorly. However, this “local” perspective often led to undesirable global metrics like
fairness. For instance, a version of TIMELY [49] has been shown to have infinite fixed points,
causing unfair rate allocations ([72], § 2).

The result has been that a CCA that meets key efficiency (generality), latency (conges-
tion), fairness, and robustness objectives remains elusive. Not only are real-world networks
complicated and hard to predict, but empirical and theoretical evidence suggests that all
objectives are not simultaneously achievable [8, 2, 72, 62, 54, 44]. Any systematization that
reveals and navigates these tradeoffs can therefore guide better CCA design.

? Anup Agarwal, Vepkat Arun, and .Srinivasan Seshan;
37 icensed under Creative Commons License CC-BY 4.0
1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 8; pp. 8:1-8:32

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:108anup@gmail.com
https://108anup.github.io/
https://orcid.org/0000-0002-0720-7843
mailto:venkat@utexas.edu
https://orcid.org/0000-0003-2192-1469
mailto:srini@andrew.cmu.edu
https://orcid.org/0000-0002-9508-2066
https://doi.org/10.4230/OASIcs.NINeS.2026.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2

Contracts: A unified lens on CCA performance

We contribute to this effort by systematizing the performance consequences of the mech-
anisms that CCAs use to coordinate fairness. CCAs make rate decisions under uncertainty,
which arises from two sources. First, CCAs are decentralized (i.e., flows cannot directly
communicate with each other and thus, are unaware of the others states). Second, they
operate under partial observability (i.e., flows lack direct visibility into network state such
as topology, link capacities, queue occupancies, or the number of competing flows).

To make optimal rate decisions, flows must infer uncertain state by relying on narrow
observations of their own transmissions and acknowledgments (ACKs).! While probes can
help estimate latent parameters such as link capacity and propagation delay [14], there is
no way for a flow to unilaterally infer how many flows it may be competing with (§ 2).
To work around this, CCAs (implicitly) coordinate with each other by encoding fair shares
into observable signals. For instance, Reno uses loss rate to coordinate fair shares, where
each endpoint transmits at a rate o< 1/4/loss rate [47]. We call such communication
mechanisms contracts. To our knowledge, all existing fair CCAs have a contract in their
design, either implicitly (e.g., Reno [47], Vegas [45]), or explicitly (e.g., TFRC [21], Swift [36],
Poseidon [64]).

CCA contracts differ in the signals they use and their shape (e.g., steeper vs gradual).
For example, delay-based CCAs encode fair share as: “1/delay” [12, 67, 9], “1/delay?”
[36], or “e~9elay” [8].2 Contracts effectively parameterize the space of CCAs without fully
specifying a CCA. For instance, the entire family of TCP-friendly CCAs [31, 30, 21, 10]
“follow” Reno’s contract (i.e. send at rates o< 1/v/loss rate), but they differ in other
aspects, such as stability and convergence time properties.

Tradeoffs. This variety in contracts raises the question: “What are the tradeoffs between
different contracts?” In exploring this question, we discovered a surprising result. The
contract—a design aspect that may not have been chosen explicitly—fully determines four
key congestion control metrics: (1) robustness to noise in congestion signals, (2) fairness in
a multi-bottleneck network, (3) amount of congestion (e.g., delay, loss), and (4) generality
(e.g., the range of link rates the CCA supports). Robustness and fairness are better with
gradual contracts functions (e.g., Vegas [12, 45] “1/delay”), while congestion and generality
are better with steeper contracts (e.g., Swift [36] “1/delay?”) (§ 4). Thus, we cannot have
the best in all four metrics.

Additionally, for a fixed contract, tolerating more congestion allows supporting a larger
bandwidth range. In that sense congestion and generality are also at odds. Contracts also
determine link utilization and total throughput. Our analysis subsumes these under fairness
definitions (§ 4), where throughput and fairness are known to be at odds [50].

Similar tradeoffs have been explored before. Arun et al. [8] discuss a special case where
full generality precludes simultaneous robustness and bounded variation in congestion. We
find that their proposed workarounds cause unfairness due to other reasons (§ 4, § 5). Zhu
et al. [72] show that delay-based CCAs cannot simultaneously ensure fixed delays and
fairness. That is, if a delay-based CCA maps the same delay value to multiple rates, it
does not have a contract, and cannot be fair. The NUM (Network Utility Maximization)
literature [35, 61, 43, 45] studies a subset of these tradeoffs for individual CCAs. To our
knowledge, we analyze a wider range of tradeoffs and also generalize them to many CCAs.

1 Measurements like packet round-trip times (RT'Ts) and losses can be inferred from these observations.
2 Throughout the paper, we use delay to mean a queuing delay estimate (e.g. RTT — minRTT).

A. Agarwal et al.

Mistakes. Contracts also go beyond prior work by enabling us to identify previously un-
known scenarios and (avoidable) design mistakes that cause severe performance degrad-
ation or suboptimal performance in a wide range of CCAs (§ 2, § 5). We find that
CCAs whose contracts have extreme shapes (e.g., logarithmic, exponential), shifts (e.g.,
rate = 1/(delay — c) vs. rate = 1/delay), clamps (e.g., delay = max(c,1/rate)), or
intercepts can starve flows. We observe this in BBR [14], ICC [33], and Astraea [42]. Fur-
ther, CCAs with an explicit contract (e.g., Swift [36]) do not need AIMD (Additive Increase,
Multiplicative Decrease) updates to reach fairness. Instead, MIMD (Multiplicative Increase,
Multiplicative Decrease) updates allow exponentially fast convergence to both fairness and
efficiency (§ 6). Finally, we show that having fixed end-to-end thresholds, e.g., AIMD on
delay [59, 11, 38], causes starvation on topologies with multiple bottlenecks.

Our methodology applies to not only analytically designed CCAs, but also black-box
implementations, such as Tao (Remy) [60, 68], and learned CCAs, such as PCC [18] (online-
learning) and Astraea [42] (reinforcement-learning or RL).

Blueprints. Using contracts, we build blueprints for CCA design and analysis. These
blueprints take a “contracts-first” approach, making the tradeoffs and mistakes intuitive and
actionable (§ 2). First, the tradeoffs are obvious from the contract choice (after a few to no
algebraic steps), forcing the designer to deliberately choose between uncomfortable tradeoffs
and picking Pareto-optimal points. Second, contracts align with how our community designs
CCAs: a variety of CCAs start with a target rate equation and build dynamics around it,
e.g., Swift [36], TFRC [21].

In contrast, other methodologies often start from a utility function: local utilities (e.g.,
“log(tput) — log(delay)” in Copa [9]), global utilities (e.g., NUM/Remy [68]), or reward
functions in RL [42]. These hide tradeoffs giving an illusion of unilaterally optimizing latency
or throughput when these are intertwined with other metrics like fairness, robustness, and
generality (§ 4). Consequently, many designs pick sub-optimal tradeoffs as inadvertent
artifacts of other design decisions (§ 3, § 4, § 5).

Use cases. We envision that future work will use our blueprints for the design and analysis
of CCAs enabling deliberate selection of Pareto-optimal tradeoffs and avoiding performance
mistakes. We demonstrate these uses by (1) analyzing and exposing performance issues in
a variety of CCAs (§ 3.1, § 5, § 6), and (2) designing a few canonical contract-based CCAs
(§ 4,§6,§ 7). In another paper [3], we also use contracts to design the first CCA that that
provably avoids starvation on networks with delay jitter showing that the starvation result
by Arun et al. [8] is not as pessimistic as it seemed.

Contributions. We build contracts to formalize the mechanisms CCAs use to coordinate
fairness (§ 2, § 3). We discover and analytically quantify the tradeoffs (§ 4) and avoidable
design mistakes (§ 2, § 5) exposed by contracts. We build blueprints of CCA design and
analysis (§ 2) to help avoid the mistakes and navigate the tradeoffs. We validate our findings
using simulation and emulation, finding a near-perfect match between analysis and measure-
ments (§ 7). We end by discussing potential ways to work around the tradeoffs, limitations
of contracts, and how we may expand their uses (§ 8, § 9). For instance, much of our current
focus is on steady-state performance, and we hope to extend reasoning to short-flows and
inter-CCA fairness. Further, if the network supports mechanisms like fair queueing, or if
fairness is not desired, then contracts are not needed, and the tradeoffs do not apply.

8:3

NINeS 2026

8:4

Contracts: A unified lens on CCA performance

3x 1 Mbps. i
 — —— 407 § above target 407
\ i | 4
SWIlCA T = = = = = = = = i 1 1
E 'J" = Boftleneck link KSW'"’”Z) 30 3 30 4 2
Scenario A 1 Mbps g (measured loss rate 2 20 3 T U/s (Vegas) |
____________________________ SMbps o & 20 ’ x 7] 1/52 (Swift)
TN —] target rate)]
4 10
SWitCh 1= = = = = = = - - [Switch 2)] ERD
! wie)- Bottleneck link (WIC) 10 $~— below target :Nglsk
Scenario B TK/I7bpsN B e e e A e e e N OAyvvvyvvvvyvvvvy,,,,T

0 10 20 30 40 0 10 20 30 40

Loss rate Delay
Figure 1 To distinguish the
scenarios, the red (lower) flow Figure 2 Reno uses loss rate Figure 3 A steeper con-
must coordinate with green (up- to encode fair shares. Flows up- tract implies worse robustness
per) flows. date rates towards the target. to noise.

2 Motivation (Why contracts?)

Since CCAs do not know how many flows they are competing against, they need some form
of agreement between flows to determine their fair share. For instance, consider the scenarios
in Figure 1. If the green (upper) flow in scenario B exactly emulates the cumulative effect
of the three green flows in scenario A, then the red flow cannot tell the difference. Its
observations (the time series of packets transmissions and acknowledgements) are identical.
Yet, its fair share is different.

Contracts help flows to disambiguate between such scenarios. Since flows cannot directly
communicate with each other, all flows “agree” to follow an encoding of fair share into
globally observed signals. For example, Reno uses: “rate o< 1/4/loss rate” [47, 21]. While
this is not explicit in the design, the emergent behavior is that all flows react to losses such
that they effectively measure the average packet loss rate and calculate a “target rate” using
this formula. Then they increase or decrease their actual sending rate to move towards this
target (Figure 2). Returning to scenario B in Figure 1, both the red and green flows measure
the same loss rate, and hence calculate the same target rate, but they have different sending
rates. Thus, at least one of them will change their rate until they reach a steady-state where
everyone’s sending rates are equal.

Mathematically, the contract forces a unique equilibrium. Consider a fluid model ex-
ecution of a CCA on a dumbbell topology, with n flows (f1, to f,.), flow f; having an
RTprop (round-trip propagation delay) of R; seconds and a link capacity of C' packet-
s/second. The fluid model equations yield n 4+ 1 independent variables with 1 independ-
ent equation:) . rate; = C. Where, rate; = cwnd;/RTT; and RTT; = delay + R;.
The independent variables are cwnd; and delay. The CCA through its contract (e.g.,
rate; = cwnd; /RTT; = 1/delay) yields n additional equations to ensure a unique solution
to this system.

To our knowledge, all existing CCAs use a similar method of coordination. They just use
different signals and contract shapes. E.g., DCTCP, DCQCN, and MPRDMA use average
ECN marking rate [4, 71, 46, 72]; Poseidon uses the maximum per-hop delay [64] collected
using INT (In-band Network Telemetry); AIMD on delay uses bytes (or time) between high
delay (§ 5). Even CCAs generated through machine-learning (e.g., Astraea [42]) implicitly
learn to use contracts (§ 3.1).

Due to the coupling between rate and congestion, a CCA’s contract choice induces a
variety of tradeoffs, e.g., halving the link capacity quadruples the steady-state loss rate for
Reno (§ 4).

A. Agarwal et al.

2.1 Isn’t this obvious? Why this paper?

Contracts share mathematical foundations with NUM (§ 3.2) and some of our results may
seem like simple extensions of existing results. Despite this, many CCAs (including recent
ones) repeatedly commit avoidable mistakes resulting in poor performance. We detail some
of these mistakes below with others in § 5. To our knowledge, outside of mistake #1, other
mistakes (including § 5) have not been documented before. Contracts helped us discover
these issues, and make it easier to systematically avoid them in future designs.

These mistakes stem from several anti-patterns, including, treating CCA design as a mere
reaction to congestion (without analytically understanding their consequences) or blindly
using AIMD in hopes of ensuring fairness. The most prominent anti-pattern is myopically
optimizing latency without reasoning about fairness. This manifests in various ways, includ-
ing, setting constant delay targets in hand-designed CCAs (§ 5) or in reward functions of
RL-based designs (§ 3, § 5). However, latency is intertwined with other metrics and cannot
be optimized unilaterally (§ 4, § 5). Note that this is different from the tradeoff between
latency and throughput, which stems from variations in link capacity as opposed to the
coordination mechanisms used by CCAs.

Mistake #1: Not having a contract. Many CCAs do not have a contract, i.e., there
is no unique mapping between steady-state rate and congestion signals to force a unique
equilibrium. Consequently, these CCAs can exhibit arbitrary amounts of unfairness. For
instance, Theorem 4 of [72] shows that a version of the TIMELY CCA [49] admits infinitely
many solutions to the steady-state equations described above. Each solution corresponds to
a different allocation of flow rates (provided they sum to link capacity), with a potentially
arbitrarily large ratio of flow rates (arbitrary unfairness).

Mistake #2: Picking extreme contracts. Recent proposals like ICC [33], Astraea [42],
and the exponential CCA from [8] optimize for a narrow subset of performance metrics,
yielding contracts that are good for some metrics but extremely bad for others. All three
CCAs cause extreme unfairness in multi-bottleneck topologies (§ 4). ICC and Astraea are
also extremely susceptible to network jitter (§ 4).

Mistake #3: Conflating AIMD with contracts, and picking sub-optimal dynamics.
Swift [36] uses AIMD to update cwnd despite having an explicit contract. AIMD is not
necessary for fairness and unnecessarily increases convergence time. With explicit contracts,
MIMD updates can reach fairness exponentially fast while maintaining a stable control loop
(§ 6). For instance, in Figure 2, all flows measure the same loss rate and compute the same
target rate. Flows can update their current rate to move towards the target using any incre-
ment choice (additive or multiplicative). Fairness is ensured despite MIMD updates because
flows stop changing their rate if and only if all flow rates are equal to the target rate (and
hence to each other).

Likewise, PowerTCP [1] claims that RTT-gradient based CCAs (“current-based” in [1])
are more reactive and precise than RTT/delay/loss/ECN-based CCAs (“voltage-based”
in [1]). We argue that reactivity is orthogonal to the choice of congestion signal. We
can have exponentially fast convergence to both fairness and efficiency even when using
“voltage-based” control (§ 6).

Finally, works like Poseidon [64] artificially distinguish AIMD control and “target scaling”
(contracts) even though they are mathematically equivalent. AIMD dmplicitly creates a

8:5

NINeS 2026

8:6

Contracts: A unified lens on CCA performance

contract (or scaling/mapping between rate and congestion), while “target scaling” is an
explicit contract.

2.2 Avoiding mistakes using contracts

While there is no exhaustive list of mistakes, by following a contract-first blueprint, many
common mistakes can be avoided.

Design blueprint. To design a new CCA, first, (D1) pick a contract. In § 3, we define
contracts as a function. Picking a contract involves deciding its (D1.1) input (e.g., delay,
loss, ECN, etc.) and output (e.g., rate, cwnd, fraction of link, etc.), (D1.2) shape (e.g., linear,
square-root, exponential, etc.), and (D1.3) parameters (e.g., scale, shift, clamps, etc.). § 4,
§ 5 and § 8 give guidance on how these choices affect steady-state performance. Then,
(D2) implement dynamics to follow the contract. § 6 gives guidance on how the dynamics
impact convergence time/stability along with other design considerations. Note that unless
congestion control is solved, our list of considerations is necessarily incomplete.

Analysis blueprint. For analyzing an existing CCA, one should: (A1) compute its contract
(§ 3.1), (A2) see where the contract lies in the tradeoff space (§ 4), (A3) identify any obvious
issues due to shifts/clamps/intercepts in the contract (§ 5), and (A4) compare dynamics with
those in § 6.

Figure 1 shows why some form of agreement between flows is necessary to achieve fairness
with end-to-end CCAs. While we do not formally prove this, we believe this agreement can
always be represented as a contract function, and consequently, the tradeoffs induced by
contracts are fundamental. The only way to work around the tradeoffs is to change the
input/output in the contract to decouple performance metrics from the contract (§ 8). We
believe that other efforts for improving steady-state performance are futile and will likely
lead to reinventing a CCA already covered in the design/tradeoff space in § 4.

3 Contracts

» Definition 3.1. The contract of a CCA is a function of the form average sending rate =
func(aggregate statistic) that “describes” the CCA’s steady-state behavior (e.g., at
time infinity) when competing with itself on a dumbbell topology. The aggregate statistic
(e.g., delay, loss rate, etc.) is derived from the CCA’s observations: the time series of sending
and acknowledgment sequence numbers, along with any explicit signals (e.g., ECN [57],
INT [64]). As a shorthand, we use “r = func(s)”, or “r = £(s)”. a

Here, “describe” depends on the form of steady-state. Most CCAs exhibit a fixed-point
or a limit-cycle equilibrium. In the fixed-point case (e.g., Vegas [45]), the set of fixed-points
is same as the set of input/output pairs of func. If this set forms a relation rather than
a function, the CCA is unfair and does not have a contract (e.g., TIMELY [49]). In the
limit-cycle case (e.g., sawtooth behavior in Reno [31], DCTCP [4]), we convert the cycle
into a fixed-point by considering the aggregate behavior (e.g., average sending rate) over
the cycle. For instance, DCTCP’s contract is “avg cwnd = 1/(avg ECN marking rate)?”,
derived in [4, 5].

In general, it is difficult to rigorously define contracts given CCA behaviors can be
complex. We discuss possible extensions in § 9. Our current definition captures all the

A. Agarwal et al.

o 1.0 A B B 80 50 4 &

%’ 1 Increase Link capacity ”‘\‘N # Data] # Data

% os 1 e 10 Mbps = ~o_ ——- Fit (rate oc 13.63 — delay) | _ 40 R (me - 1)

¢] 30 Mbps _§ 60 ~ _§ 1w (avg delay—46.91)089

T o004 No TS > _ | ==+ 50 Mbps = *\\ S 307

g 4 change —— 70 Mbps e 40 o ° |

T 05] £ sl & 7

s~ -5 1 Decrease 20 o 87N 10 4

K] 1 cwn ~ E| 'Y

ﬁ—lo; cwnd ——> SN i “—’__'__.___’

<-L R L O Tt 0 7 T T Immmms T L B A B
0 5 10 15 20 25 8 9 10 11 12 13 50 60 70 80 90

Delay (ms) Delay (ms) Avg delay (ms)

Figure 4 Astraea’s state to
action map (from [42]). Points
on the dashed black line are the

Figure 5 Curve fitting ana-
lytical fixed-points (from Fig-

Figure 6 Curve fitting em-
pirical fixed-points to compute
BBR’s contract. BBR is cwnd-

ure 4) to compute Astraea’s con-

fixed-points. tract. limited with multiple flows [65].

CCAs we analyzed; for each CCA, we can either compute its contract or show that it is
unfair and does not have a contract.

In § 2, we introduced the contract for a CCA as its encoding of fair shares into observable
signals, which enforces a unique equilibrium in the fluid model equations. This “encoding”
and the “steady-state behavior” are two equivalent views of a contract: the CCA follows the
encoding in steady-state revealing the encoding in its steady-state behavior. We adopt the
steady-state view in defining contracts as it provides a constructive definition, allowing one
to derive the contract directly from a given CCA.

3.1 Computing contracts

We compute the contract of a CCA by analyzing its steady-state behavior. We run it
analytically or empirically on a variety of dumbbell configurations (with different capacities,
RTprops, buffer sizes, and flow counts) and collect the set of steady-state observations. Then,
we group this set based on an aggregate statistic, such that observations with the same
statistic value have the same rate. These equivalence classes define the CCA’s contract
function. When the same steady-state observations result in different rates, the CCA is
unfair and does not have a contract.

Often, this reduces to program analysis of the CCA’s code (see Vegas’s example below)
or fluid model analysis (see [72] for DCQCN [71]). One rarely has to compute contracts
oneself. The literature has already computed contracts for most CCAs; we cite these in
the “func(s)” column of Table 3. This allows us to focus on the performance impact of
contract choice, instead of computing contracts. For completeness, we show below examples
of analytical and empirical contract derivations.

Note, even for CCAs where fluid modeling is hard, their equilibrium behavior is well
understood. For example, BBR [14] encodes fair shares in delay when cwnd-limited [8], and
in “growth in delivery rate” when rate-limited [23]. In some cases the aggregate statistic is
multi-dimensional and/or the contract is a compound function. For instance, Copa emulates
Reno on detecting competing loss-based flows [9]. When the loss rate is zero, Copa follows
a delay-based contract versus Reno’s contract otherwise. For simplicity, we focus on homo-
geneous settings where flows use the same CCA and run in a single mode, e.g., we disable
mode-switching in Copa. We expect the different modes to follow the tradeoffs according to
the contract followed in the mode.

Analytical contract derivation (Vegas, taken from [61]).
compares diff = expected_throughput —actual_throughput = cwnd /RTprop—cwnd /RTT
t0 Qrate, Where auate is a configurable parameter. Vegas increases cwnd when diff is larger

To update its cwnd, Vegas

8:7

NINeS 2026

8:8

Contracts: A unified lens on CCA performance

100

o] — 10.33 ==- 38.63] — 36.82 ==- 11.34] —_— 4411 ==+ 442

iy] —-- 8.49 45.85 | 1 —-- 3502 10.80 | —- 6.99 44.72

2 50]] SE— =

. 7 PRVOVE Vv s bbbt T 7 i nal s

2] i 1 (! |

NS] B [S S
T — T T LA B | T
0 20 40 60 0 20 40 60

Time (s), Indigo Time (s), PCC-Allegro Time (s), TaoVA

Figure 7 Indigo [70], Fillp/FillpSheep (TACK [41]), PCC-Allegro/Vivace/Experimental [18],
and TaoVA (Remy) [60, 68] are unfair and have no contract. We only show three for brevity. The
lines show the time series of throughput and the legend shows the average throughput of the 4 flows.

Table 1 Contracts computed for CCAs in Pantheon. We omit constant scaling factors for

brevity.
BBR (avg delay — 46.91) "% [Vegas | avg delay 0 Copa | p50 delay %%
LEDBAT | 102 — p50 delay Sprout | 134 — avg delay Cubic | loss rate 0%

than ayate, and decreases otherwise. Fixed-point steady-state occurs when Vegas has no
incentive to change its cwnd, i.e., diff = ayate. This equation gives us the contract. We
substitute cwnd = rate-RTT, and RTT = RTprop + delay, and simplify, to get Vegas’s
contract: rate = ozrate~RTprop/de1ay.

Analytical contract derivation (Astraea, adapted from [42]). We can compute contracts
even for black-box CCAs without running them. We show this for the RI-based CCA
Astraea [42], which implicitly learns a contract. Figure 4 shows its feedback (state) to
action mapping. We obtain this by querying its neural network’s action for different feature
vectors (states). For a given capacity and delay combination (state), action > 1 increases
cwnd, and action < 1 decreases cwnd. Astraea is at a fixed-point when it has no incentive
to change cwnd (action = 0). For each link capacity (or fair share), Astraea maintains
a unique delay, given by the X-coordinates of points with action = 0. We fit a curve
(rate = a(delay + b)° + d) to these points to get its contract (Figure 5).

Empirical contract derivation (CCAs in Pantheon). To demonstrate that (1) contracts
are easy to compute, and (2) fair CCAs have a contract, we empirically derive contracts for
all CCAs in Pantheon [70] using an automated procedure. We use Pantheon to run each
CCA for 60 seconds on a dumbbell topology with link capacities of 24, 48, and 96 Mbps, 40
ms RTprop, 4 BDP buffer, and vary the flow count from 2 to 8 (except Cubic, which uses 1
BDP buffer). These yield samples for throughput and three aggregate statistics: p50 delay
(ms), avg delay (ms), and loss rate. We compute contracts by fitting a curve to these points
(Figure 6) and pick the statistic “s” and fit that minimizes mean squared error.

The configurations we picked are not special. One should pick the dumbbell configura-
tions that best align with the target deployment of the CCA that one is analyzing. Most
CCAs produce relatively continuous steady-state behaviors and interpolating/extrapolating
steady-state behavior from a few configurations is often enough for computing contracts.

Of the 17 CCAs in Pantheon, we faced deprecation/dependency issues for QUIC Cu-
bic and Verus. We run the remainder 15. 2 CCAs (SCReAM and WebRTC) get ~ 0
utilization (consistent with the Pantheon report [69]). 7 CCAs (Indigo, Fillp/FillpSheep,
PCC-Allegro/Vivace/Experimental, TaoVA) are unfair (Figure 7) and hence, do not have a
contract. Unfair means different flow rates despite similar statistics/signals, indicating the

A. Agarwal et al.

absence of a unique signal-to-rate mapping (contract). Table 1 shows the contracts derived
for remainder 6 CCAs.

Our automated procedure is for illustration purposes and is not full-proof. These con-
tracts are for the range of networks we experiment with. The shifts in delays (e.g., 46.91
in BBR and 102 in LEDBAT) depend on the RTprops or buffer sizes, e.g., for BBR the
shift is equal to RTprop. One would require more experiments to deduce this empirically.
Similarly, the unfair CCAs may be fair and exhibit contracts on a narrower range of scen-
arios. For instance, we find that PCC-Vivace and PCC-Experimental exhibit the contracts

047 and “p50 delay 46" respectively, if we only consider data from the 96

“avg delay
Mbps link. Finally, the contracts may be compound functions that take different shapes
on different ranges of networks and use other statistics than the three we considered. For
instance, [53] shows Reno’s contract under different operating regimes: loss detections are

dominated by timeouts vs duplicate ACKs.

3.2 Scope

We only consider strictly decreasing contracts, with closed intervals as their domain and
range, ensuring they are continuous and invertible. All contracts that we are aware of
are decreasing: the statistic typically measures congestion; an increasing contract suggests
increasing the rate with increasing congestion. This further increases congestion, creating a
positive feedback loop.

Rate- vs cwnd-based contracts. A contract can be written in terms of rate or cwnd, and
using rate = cwnd/RTT to convert between the two forms. Independent of the form, the
CCA can be implemented using either rate or cwnd (§ 6). Without loss of generality, we
consider rate-based contracts.

Exploration over time. CCAs often use control loops that periodically explore the net-
work to estimate latent parameters, and the effects of this exploration are reflected in the
aggregate statistic used in their contract. For example, Copa deliberately oscillates its send-
ing rate to alternately drain and build queues: draining enables estimation of the round-
trip propagation delay (RTprop, also called baseRTT or minRTT), while building queues
enables estimation of the “standingRTT”. Copa then computes the aggregate statistic as
s = delay = standingRTT — RTprop. Similarly, BBR launches bandwidth probes every
8 RTprops and RTT probes every 10 seconds. When BBR is rate-limited, the aggregate
statistic captures the growth in ACK rate during a bandwidth probe; when cwnd-limited,
the RTT-probes estimate the RTprop and consequently queueing delay, analogous to Copa.

In general, a CCA’s aggregate statistic can be complex, combining multiple measure-
ments and the dynamics of the CCA’s exploration, rather than reflecting a single congestion
signal at a specific time instant. We do not exhaustively explore all the nuances in how these
statistics are computed, though these can also significantly affect performance. Nevertheless,
we hope that by viewing CCAs through the lens of contracts designers can reason about and
navigate these complexities.

Non-globally observed signals and RTT or RTprop bias. CCAs often rely on signals
that are not globally observed, i.e., different flows may see different values for the signal.
For example, flows can experience different RTTs or RTprops. These non-global signals
can introduce biases in the sending rates. Contracts explicitly capture these biases. For
instance, Reno allocates more rate to flows with lower RTTs, following the contract rate

8:9

NINeS 2026

8:10

Contracts: A unified lens on CCA performance

1/(RTT+/loss_rate). Similarly, Vegas favors flows with higher RTprop, as expressed by the
contract rate = Qqate ~RTprop/de1ay.

Although such biases have attracted significant attention in the community, they can
often be removed by adjusting the contract. For example, many Vegas implementations
eliminate the bias by setting arate = Qpts/RTprop [29]. The same can be done for Reno by
removing the RTT term from its contract and implementing the contract using TFRC [21].

Because differences due to non-globally observed signals can be easily removed, and many
“good” CCAs already do this, we omit these factors in the bulk of our analysis. Nevertheless,
CCA designers and analysts should remain aware of these effects and their potential impact
on performance.

Contracts in NUM. The concept of contracts can also be described using NUM [35, 61, 43,
44]. A contract maps the aggregate statistic (congestion measure or price) to rate, same as
the demand function (target rate) for a given price [35]. The inverse of a contract represents
the link price (e.g., target delay) for a given load (e.g., link’s ingress rate) [35]. Consequently,
the utility function that the CCA optimizes is (derived in [43]): U(r) = [func™!(r)dr (1).
Here, U is the utility derived from a rate of r. Eq. 1 only holds for statistics that add up over
links (e.g., delay). For other statistics (e.g., max per-hop delay), the utility is different [64].

4 Metrics and tradeoffs

Metrics. We list the metrics that CCAs typically optimize, and study how contracts affect
them.

1. Link utilization, flow throughput

Amount of congestion (e.g., delay, loss)
Stability, and convergence time/reactivity
Fairness (on general topologies)
Robustness to noise in congestion signals

S

Generality (range of link rates, flow counts)

Of these metrics, fairness notions (see below) subsume Pareto-optimality; that is, the
bottleneck links are fully utilized. They also subsume the tradeoff between total through-
put and fairness (see below). Stability and convergence time are concerned with transient
behavior as opposed to steady-state equilibrium. While contracts may affect them, we can
often independently optimize them by choosing how fast a CCA’s sending rate moves to-
ward the target rate (§ 6). We are left with the following four metrics: robustness, fairness,
congestion, and generality.

Approach. The choice of contract determines these four performance metrics. We show
this by expressing each metric explicitly as a function of the contract func. Conversely,
specifying a desired value for one metric constrains the contract, which in turn constrains
the other metrics (i.e., a tradeoff). We derive these tradeoffs quantitatively by characterizing
the feasible values of one metric under a desired constraint on another metric. We keep
our metric definitions unit-less to minimize dependence on network parameters (e.g., link
capacity, RTprop).

We use running examples of Vegas [12, 45] (r = 1/s) and Swift [36] (r = 1/s?), where
s is delay. We omit constant factors that ensure that the units are consistent. E.g., the
unit of 1 in Vegas’s and Swift’s contract is bytes, and byte - seconds respectively, so that the

A. Agarwal et al.

Figure 8 Parking lot topology

Table 2 Rates under different fairness notions on the parking lot topology (Figure 8). Both
links have capacity C' = 1. r; shows the rate of flow f;. From top to bottom, fairness (rate equality)
improves but total throughput (or rate) decreases.

Fairness notion o Global utility 70 r1 =79 Tofjli ;a:te, E)gzén g)le
Max throughput 0 Zf:o i 0 1 2

Proportional 1 Hf:o i 1/3 2/3 5/3 Vegas
Min potential delay 2 Zf:o —1/r; V2—112-+v2 32 Reno
Max-min oo | min; 7y 1/2 1/2 3/2 Poseidon

function value has the unit bytes/second. Table 3 shows where existing CCAs fall in the
tradeoff space.

Generality (e.g., range of link rates supported).
signals to a finite range, s € [Smin, Smax]- Small delays and losses are difficult to measure

Practical constraints limit congestion

due to noise, while large delays and losses increase application perceived latency. Since the
contract maps congestion signals to rates, this range confines the CCA’s operating range
of link rates to [func(Smax), func(Smin)], where func(Smin) > func(Smax) because func is

decreasing. CCAs must select the constants in func to suit the networks they operate on.

For instance, if delay spans a 200x range, e.g., delay € [0.5 ms, 100 ms], Vegas can support
only a 200X range of sending rates (e.g. 1 Mbps to 200 Mbps), whereas Swift can support
a 2002x range (e.g. 1 Mbps to 40 Gbps). In general, steeper contracts enable a broader
range of bandwidths for the same domain of the congestion signal.

Note, our community does not generally say that a given CCA does not support a
particular link rate. Here, by saying that a CCA cannot support a link rate, we mean that
when the CCA is running on that on that link rate, some performance metric (e.g., high
utilization, fairness, low delay, etc.) breaks down. For example, at low link rates, multiple
competing Astraea flows can exhibit starvation (Figure 11). Conversely, at high link rates,
all “delay-convergent” CCAs exhibit flow starvation [8].

Robustness to noise. We study the impact of “ds” error in the statistic “s” on the CCA’s
rate. We quantify the impact by looking at the (worst-case) ratio of rates without and
with the noise: Error factor = max, % (2). A higher error factor means that the
CCA is more sensitive to noise and is less robust. From Eq. 2, the error factors for Vegas
(r = 1/s) and Swift (r = 1/s2) are “1 + 0s/Smin”, and “(1 4 85 /Smin)>” respectively. If s
error perturbs Vegas by 2x, then the same error perturbs Swift by 4x. Steeper contracts
yield higher (worse) error factors (Figure 3).

The magnitude of noise “ds” that a CCA must tolerate depends on the chosen statistic.

For example, delay estimates may exhibit tens of milliseconds of noise [24], whereas loss-rate
estimates may fluctuate by a few percent [37]. CCAs often attempt to mitigate such noise
by filtering or smoothing raw congestion signals (e.g., using min, max, or averages over raw
delay samples). In this setting, ds represents the residual noise in the statistic after filtering,

8:11

NINeS 2026

8:12

Contracts: A unified lens on CCA performance

Table 3 Existing CCAs and the tradeoff space. We organize into 3 sections: good contracts
(blue, top), corner points (green, middle), and bad contracts (pink, bottom). For Reno, s is loss
rate. For DCTCP, s is ECN marking rate. For Poseidon s is max per-hop delay. For AIMD on
delay, s is bytes between high delay. For all other CCAs s is delay. We assume loss and ECN
marking rates are small enough to approximate fold as » .. For Poseidon, fold is max and for
AIMD on delay, fold is harmonic sum (§ 5). fold is > for all other CCAs. In ICC and Astraea,

unfairness and robustness error are worst when s ~ Sj.

. Robustness er- | Unfairness Congestion for | Range of band-
CCas func(s) = £(s) ror for ds noise | with k hops n flows widths
£(s) £(s) £ (C/N £(Smin)
max f(Tsésa) MaX grsa(,)] Max f*(l(é) : #(Smax)
Lower is better | Lower is better | Lower is better i;gher B
;Nant dhotel ;Nant el Want steeper £ | Want steeper £
FAST,
Vegas, L 67, 43, 8] 1+ 2 k n Spax
Copa
Swift, 1 [36 4 5] 1 5s \2 k2 \/ﬁ Spmax)2
DCTCP 52 D % (1+5%) (5=)
1 ds 2 max
Reno L [31, 47, 43] \/1 e vk n \/gi
Poseidon e ° [64] e%s 1 logn eSmax—Smin
a-fair 1 o a
Eq. 1 o s o [Smax
(§ 4) s (gl) 1 Smin \/E " Smin
Exp. /5 [g] 285/50 o Smax/ 50 logn e
S0\ [2- = log So —log Siin
ICC log (%) [33] | oo o0 (o) Tog So—Tog Suus
Astraca | Co(1—57) (§3) | o Roey | smsem
AIMD 1 2
1 s Smax
on delay Vs (§5) 1+ smsin © n Sinin

rather than noise in the raw signal itself.

Even small residual noise can significantly distort rate allocations when combined with
certain contract shapes. For instance, Figure 15 shows that flows can starve under BBR
and Copa despite the use of filtering mechanisms (BBR takes the max over ACK rates;
Copa takes the min over delays). While the contract’s shape and input/output choice play a
central role in determining robustness, they may not be sufficient in isolation. CCA designers
should holistically reason about how noise in raw signals propagates through the aggregate
statistic and the contract function to ultimately affect rate allocation.

Fairness. For general network topologies, there exist multiple notions of fairness (Table 2).

These are typically parameterized using a-fair utility functions [50] given by: U, (r) = %,
where U represents the utility a flow derives from a rate of r, and a > 0. The rate allocation
maximizes the sum of utilities across all flows (>, Ua(75)) (global utility). Larger values of
« indicate greater fairness at the cost of total throughput [62]. Typically, a > 1 is desired.

Not all contracts correspond to an a-fair utility. As a proxy, to compare the fairness of
contracts, we study their behavior in the parking lot topology (Figure 8). This topology
exposes differences between fairness notions (Table 2), and is common in data centers (e.g.,
when inter- and intra-rack flows compete). In Figure 8, each link has a capacity of C
bytes/second and flows experience congestion signals from multiple congested links. The
long flow (fy) observes signals from two hops, while the short flows (f; and f2) observe

signals from only one hop. More generally, for k hops, we consider flows (fo, f1,-.-, fx),

A. Agarwal et al.

where fy observes signals from all k hops, and other flows see signals from a single hop.
We quantify unfairness as the (worst-case) throughput ratio of fi to fo. We derive
unfairness using three steady-state equations. First, at each hop, the sum of the incoming
rates is equal to the link capacity: Vi > 1, ro+r; = C (3). Second, each flow’s rate (r;) and
statistic (s;) follow the contract Vi > 0, r; = func(s;) (4), Third, fo sees an accumulation
of signals from all the hops: sg = fold(sy, S2,...,Sk) (5). Here, fold describes the statistic
fo sees when other flows see s1,s3,...,5;. For delay, so = Zle si, as delays add up over
hops. For loss rate and ECN marking rate, s = 1 — Hle(l — 8;), as survival probability
gets multiplied over the hops. Note, when the absolute value of loss rates (or ECN marking
rates) is small (e.g., 1072), then fold can be approximated as a sum. For max per-hop

delay (e.g., Poseidon [64]), so = max(s1,Sa, ..., Sk)-
From Eq. 3, we get 1 = 79 = ...rg. Given, func is invertible, we get s; = s2 =
- = sp. Then, the worst-case throughput ratio is given by: maxc = = i‘;ﬁigzzg =

m func(sy)
axc func(fold(sg,sk,....k times))

C (from Eq. 3).
Substituting the contracts for Vegas and Swift, and fold as), we get the throughput
ratios of k and k2 respectively. Steeper contracts imply worse fairness.

(6). Here, s, solves func(sy)+func(fold(sg,...,k times)) =

Congestion growth. We study how congestion grows with (decreasing) fair share or (in-
creasing) flow count. Consider a dumbbell topology with capacity C and n flows. For each
flow to get its fair share of r; = C'/n, the statistic needs to satisfy: Vi, r;, = C/n = func(s;).
This implies that func=*(C/n) = s, = s;. We define worst-case growth (i.e., (s for n
flows) /(s for 1 flow)) as: growth(n) = max¢ % (7). For Vegas and Swift, growth(n)

is n and /n respectively. Steeper contracts imply slower growth.

Tradeoff summary. Gradual contracts give better robustness and fairness, while steeper
contracts give better congestion and generality. In Appendix A, we mathematically show
these tradeoffs by considering each pair of contending metrics. E.g., if we want error factor
< ¢, for ds noise, then growth(n) is (53 11;’5((:‘))). These bounds are tight, i.e., we show
CCAs that meet these bounds (see below).

The tradeoffs involving fairness depend on fold. We consider fold € {>, max, min}.
The tradeoff exists for fold = >, e.g., delay, loss rate, and ECN marking rate (assuming
loss and ECN marking rates are small enough). There is no tradeoff for max and min, e.g.,
max per-hop delay, as this allows independently ensuring max-min fairness. So, for CCAs
like Poseidon [64], the only tradeoff is between robustness versus congestion and generality.

There are exactly two corner points in this tradeoff space. If we fix desired robustness,
e.g., we want to tolerate ds noise, then the Exponential CCA [8] gives the best generality and
congestion growth, but it has poor fairness (Exp. in Table 3). If we fix desired fairness, e.g.,
proportional fairness (o« = 1), then Vegas gives the best generality and congestion growth
(for fold = 3_). In general, if we want a-fairness, then the contract “func(s) = =" gives

s

the best generality and congestion growth (for fold = >). We mathematically show that
these are corner points in Appendix A.

4.1 Guidance on picking contract (D1)

(D1.1) Input/output. Unless one chooses a workaround to the tradeoffs (§ 8), the choice
of contract input is one of delay, loss rate, or ECN marking rate. This choice depends on

8:13

NINeS 2026

8:14

Contracts: A unified lens on CCA performance

buffer sizes, availability of ECN, and constraints on dynamics (§ 6). Similarly, outside of
the workaround of coordinating fraction of link use (§ 8), the output of the contract is rate.

All the workarounds in § 8 either require in-network support (e.g., max per-hop-delay
signal) or fundamental congestion control research. For instance, [8] shows that to ensure
robustness and full generality (arbitrarily large link rates), CCAs must deliberately vary rate
and create delay variations. This goes against our desire to have a stable application-level
rate. In fact, RL-based CCAs [42] and Remy [68] update cwnd based on moving averages
of historical signals. CCAs that are deterministic responses to such histories are incapable
of creating deliberate rate/delay variations.

(D1.2) Shape. For the above input/output choices, the tradeoffs exist. One should decide
which of the two corner points in the tradeoff space is preferred. The tradeoff point fixes
the contract shape (e.g., rate = 1/s) and the asymptotics in the tradeoffs. Next, we want
to tune the contract for deployment, i.e., picking parameters that control shift or scaling
(e.g., a,b,c in rate = a/(s — b) + ¢). The scale (e.g., a) affects the constant factors in the
tradeoffs, and shifts/clamps (e.g., b, ¢) should be avoided.

(D1.3) Shift/clamps. Shifting the contract right (positive b) changes the fairness proper-
ties (§ 5). Shifting left (negative b) restricts the range of link capacities by introducing a
Y-intercept. Shifting down (negative ¢) introduces an X-intercept which severely degrades
robustness and fairness (§ 5). Shifting up (positive ¢) only makes sense if there is a known
lower bound on the fair share of a flow (e.g., fair share > 512 Kbps). Clamping (e.g.,
s = min(a, 1/rate)) has similar consequences.

(D1.3) Scale. We discuss the scaling choice for the two corner contracts. We use Cy and
Sy respectively to represent scaling of rate and s, e.g., rate = Che~*/%0. One can set these
parameters to meet a desired value for one of the four metrics. The tradeoffs decide the
other metrics.

The general form of the exponential contract is rate = Coe 5/ (O is the maximum
rate at which the CCA can ever send. If the link capacity is higher, the CCA would
under-utilize the link. Sy controls the robustness error (throughput ratio) for ds error in
5 = Craxe %% [Ciuaxe~ (5195)/S0 = ¢95/5 Larger S, gives better robustness but worse
congestion. These parameters also decide the range of delays (Smin, Smax) produced by the
CCA for a deployment’s range of fair shares (Cpin, Crax)-

The general form of the a-fair contract is rate = CypSp%/s®, or rate = CySy/s for
a = 1. The contract passes through (Sg, Cp): Sy is the delay maintained when the fair share
is Cp. The deployment’s range of fair shares (Chin, Cmax) implicitly decides the range of
congestion (Smin, Smax), and robustness to noise. For small capacities (Cinin — 0), Smax 1S
oo. For large capacities (Cinax — 00), Smin is 0 and the error factor is co (as ds/Smin — 00).
When Ciax is known (e.g., a data center), and one desires to maintain a minimum delay of
Smin (to ensure utilization despite variations [42], or bound error factor by “1 + 05/Smin”),
an example contract choice is rate = CpaxSmin/delay.

The exponential contract ensures a finite error factor at the cost of not supporting
arbitrarily large link capacities. The a-fair contract supports arbitrarily large capacities but
cannot bound the error factor. This is the same as the fundamental tradeoff in [g].

A. Agarwal et al.

Discrepancy in ratei 10! ; b
P 10t 4 E g 4
- Discrepancy -
:: 3 I in rate @ 2] without shift |
] With]| [t T
o i E Noise { shift | N—
0 et R 0 . — T
Noise
0 10 20 30 40 0 10 20 30 40 0 4 20 40
Delay Delay |—2d> Delay

Figure 9 (Left) Vegas’s contract (rate = 1/delay). The same noise creates larger discrepancies
with increasing link capacities. (Middle) Astraea’s contract (rate = So—delay) has an X-intercept.
Discrepancies increase as delay approaches the intercept. (Right) Shifting the contract changes the
fixed-point delays and rates on the parking lot topology. Solid red line shows Y-Axis without any
shift in contract. The dotted lines show the rates of two flows at steady-state (red shows without
shift and green shows with shift). Their delays are 2x apart (i.e., d and 2d). We omit units (e.g.,
Mbps or ms) here as the shape/shift/intercept matter not the scale.

5 Learnings from contracts

Avoid extreme shape and intercepts. Astraeca (linear contract) and ICC (logarithmic
contract) exhibit poor robustness and fairness due to extreme shapes and X-intercepts. The
issue is that all the low rates (e.g., 0.1 to 1 Mbps) map to delays near the X-intercept (e.g.,
40 ms) (Figure 9 middle). Consequently, small delay jitter creates large discrepancies in
inferring fair shares. Similarly, on parking lot (Figure 8), if the hop delays are close to the
intercept delay, the long flow (fy) observes their sum, which exceeds the intercept delay.
Attempting to reduce this “excessive delay”, f, reduces its rate to zero and starves.

Figure 11 demonstrates these empirically. Ambient emulation noise causes Astraea to
starve flows when the fair share is low (4 flows on a dumbbell topology with 10 Mbps
capacity, 30 ms RTprop, and infinite buffer). ICC starves the long flow (fy) on a parking
lot topology with 3 flows (2 hops) and the same network parameters. Importantly, contract
analysis reveals these performance issues without running the CCAs or understanding their
internals.

Note, unlike [8], the starvation here is not fundamental and is easily avoided by removing
the X-intercept (e.g., rate = 1/delay). This increases the delay at low fair shares, however,
this is unavoidable as transmission delays anyway grow as 1/C with decreasing capacity. In
contrast, the issue in [8] is fundamental and is caused by the asymptote on the Y-axis, where
all the high fair shares (e.g., > 100 Mbps) map to near-zero delays (Figure 9 left). This
asymptote is hard to remove while supporting arbitrarily large rates with a monotonically
decreasing contract.

Avoid shifting contracts. CCAs like Swift [36] define target delay as: target_delay =
b+1/rate. In such formulations, it may seem convenient to shift the contract (set a positive
b) to maintain a minimum delay for high utilization. However, shifting changes the steady-
state fixed-point causing undesired unfairness (Figure 9 right). For instance, in the parking
lot topology with 2 hops, the short and long flows see delays of d and 2d respectively. These
delays are such that the corresponding contract rates add up to the link capacity. Shifting
the contract rightward changes these delays in a way that increases discrepancies in the
rates. We show this empirically for BBR in § 7. To avoid this issue, one should tune the
scaling (§ 4) to maintain a minimum delay instead.

While we described shifting in the context of delay-based contracts, its impact more
generally depends on the aggregate statistic and how it accumulates over hops (i.e., the

8:15

NINeS 2026

8:16

Contracts: A unified lens on CCA performance

75 10 {lp=ywen—ra
]] £ 3 PR ¥ [
b 3 o S50] 1 —f 5|32] —h -0
R 170 e] A= f| o 5_7: fi
2 A 1" = B 3 25 7 2 g
5] 8 LN, o o
i I 0 25 50 0 25 50
B . 7 Time (s) Time (s)
Time (RTT) Time (RTT)
Figure 11 (Left) Astraea starves under am-
Figure 10 AIMD on delay starves the long bient noise. (Right) ICC starves on parking
flow (fo) on parking lot topology. lot.

fold function). The effect of such shifts can be analyzed using the parking lot steady-state
equations (Eq. 3, Eq. 4, Eq. 5). For example, with Poseidons max per-hop delay statistic,
shifting the contract does not introduce unfairness: in the parking lot topology, both short
and long flows observe the same max per-hop delay even after shifting.

A related but distinct mechanism arises with active queue management (AQM), such as
RED-based ECN marking [20, 57]. Here, it is possible to effectively shift queue buildup (and
hence delay) without shifting either the contract or the aggregate statistic (i.e., ECN marking
probabilities). Specifically, under fixed network parameters and topology, increasing the
RED thresholds K,;, and Ky, raises the steady-state queuing while leaving ECN marking
probabilities—and resulting rate allocations—unchanged. This behavior follows from jointly
solving the parking lot steady-state equations and the ECN marking probability equation.

Avoid fixed thresholds (e.g., delay targets) at end-hosts. We illustrate how AIMD on
delay (i.e., MD when delay crosses a fixed threshold and AI otherwise) causes starvation.
AIMD on delay appears in 1IRMA [59] and the CCAs (SMaRTT [11] and STrack [38])
proposed for standardization in the Ultra Ethernet Consortium [63]. It was also proposed
by [8] to work around their impossibility result.

On a dumbbell topology, AIMD on delay works fine. It induces a Reno-like contract:
r = 1//s”, where s is the high-delay probability (inverse of bytes between high-delay
events) instead of loss probability. However, it creates starvation with multiple bottlenecks.
All hosts attempt to maintain delay around the same (fixed) target value, but when flows
observe delays from different combinations of hops, they cannot simultaneously maintain
the same delay. Figure 10 shows this on a 2-hop parking lot. The short flows (fi and f3)
oscillate delay between the delay threshold and half the threshold (shown in gray). The long
flow (fo) observes their sum, which always exceeds the threshold. Consequently, fo never

[13

increments cwnd and starves.

We can resolve this by either (1) not using a fixed threshold, e.g., Swift scales the (target
delay) threshold with rate, which transforms the contract to use delay instead of high-delay
probability, allowing different flows to maintain different delays, or (2) moving the threshold
to links instead of end-hosts, e.g., packet drops (Reno) and ECN marks (DCTCP) occur
when delay crosses a threshold at the links.

This issue may arise for any CCA that uses fixed end-to-end thresholds to decide when
to increase or decrease their rate, e.g., BBRv3 uses BBRLossThresh = 2% [15].

Minor changes in CCA change the contract and consequently steady-state performance.
MPRDMA [46], DCTCP [4], and Reno [31] all perform AIMD on binary feedback. In fact,
[28] uses MPRDMA as an approximation of DCTCP. However, the minor differences in their

A. Agarwal et al.

150 - H B Fairness,~
1 line,~”
b - s
100 H 7% H-: -
5 1 > 0. 1 ™ 74 1 N A ~
c] N4 %’] N4] AV AN
g] PNy] PNy] A\ W Final state
50 A3 H A2 H A3
] \\\Efﬁciency g . o~
0 > line H > 1~ S
T T
0 50 100 150 0 50 100 150 0 50 100 150
cwndQ, (a) Delay ratio cwnd, (b) Rate ratio cundQ, (c¢) RTT ratio

Figure 12 MIMD using RTT ratio is more stable than rate or delay ratio. Dynamics stay above
the efficiency line showing no throughput loss, contrary to PowerTCP’s claim on voltage-based
CCAs [1].

design result in different contracts: Reno: “r = 1/,/57, DCTCP: “r = 1/5%”, MPRDMA:
“r = 1/s”. Similarly, we found an algebraic mistake in the Linux implementation of TCP
Vegas that changes its contract from “r = 1/delay” to “r = 1/delay?” when RTprop is
small. We have confirmed this with the maintainers. This bug has existed for 17 years due to
a refactoring commit [40]. Such bugs may be caught immediately if CCA implementations
explicitly delineate contracts.

6 Canonical CCA dynamics (D2)

We discuss how to best implement a CCA (cwnd or rate updates) to follow a contract. We
can implement updates using either rate or cwnd, regardless of whether the contract is based
on rate or cwnd. We discuss cwnd-based updates to follow a rate-based contract. Other
combinations are similar.

While the contract fixes steady-state performance, the updates determine dynamics (sta-
bility and convergence time). Existing CCAs correspond to various ways of implementing
cwnd updates to follow a contract. Vegas uses AIAD, Swift uses AIMD, Posiedon uses
MIMD (using rate ratio), FAST uses (a different kind of) MIMD (using RTT ratio), and
Copa uses ATAD with increasing gains when cwnd updates occur in the same direction.

We argue that TCP FAST’s method is the best way to implement a contract. AIM-
D/ATAD are sub-optimal in convergence time. Copa uses convex—instead of concave (e.g.,
ETC [26])—changes to cwnd, which creates overshoots and instability. Ideally, we want to
dampen changes to cwnd when it is already close to convergence [26]. Poseidon’s MIMD
creates instability depending on network parameters (see below). FAST’s update is stable
and converges exponentially fast to both efficiency and fairness. We illustrate (Figure 12)
the issue with Poseidon’s MIMD and how FAST’s MIMD fixes the issue in the context of
delay, and later discuss other congestion signals.

MIMD using rate or delay ratio (C.f. Poseidon). We can interpret a contract (e.g.,
rate = 1/delay?), in two ways: (1) target rate given current delay (target_rate =
1/current_delay?), or (2) “target delay as a function of current rate” (target_delay =
1/y/current_rate). Where, current_rate = cwnd/RTT, and current_delay = RTT —
minRTT. These yield two natural MIMD updates to implement a contract:
target_rate target_delay
target_cwnd <~ cwnd———— wnd ————————
current_rate current_delay
Where cwnd moves towards the target “next__cwnd < (1—«)- cwund+a- target_cwnd”, with
optional clamps bounding the change “cwnd < clamp(next cwnd, Spmincwnd, Smaxcwnd)”

8:17

NINeS 2026

8:18

Contracts: A unified lens on CCA performance

Outside of the contract “rate = 1/delay”, rate and delay ratios are different yielding
different dynamics. For each «, clamp choice, both updates are only stable for specific
network parameters (e.g., capacity, flow count).

MIMD using RTT ratio (C.f. FAST). To ensure stability, we want to consider how rate

and delay affect or are affected by changes in cwnd. The following update achieves stability

without requiring any averaging («), clamps, or assumptions on network parameters:
target _RTT minRTT 4 target_delay

cwnd <~ cwnd—————— = cwnd —
current RTT min RTT 4 current_delay

¢

‘packets in queue + packets in pipe”. We only want to move
the “packets in queue” part from the current delay to the target delay. This cwnd update

Intuitively, cwnds map to

isolates the term responsible for queueing delay and only scales that term using the delay
ratio. We can also interpret the update as: cwnd < rate x target RTT = cwnd/RTT x
(minRTT + target_delay).

Other congestion signals. We discussed optimal dynamics for delay-based contracts. For
other signals, e.g., ECN or loss, the best cwnd update may differ. The current and target
RTT in the update depends on the relation between RTT and aggregate statistic. For
instance, for RED-based ECN, given target_ECN_rate, the target_RTT is “minRTT +
(1/C) (Kmin + (Kimaz — Kmin) * target _ECN_rate)”. We derive this by inverting the map-
ping from queue size (and hence queueing delay) to ECN marking probability. This works
directly when ground truth link capacity “C” is known (e.g., a data center), otherwise either
the capacity needs to be estimated or one needs to use delay or rate ratio with a value of «
tuned for the range of network parameters one wants to support.

TFRC [21] explores cwnd update for loss-based contracts. The challenge is that while a
constant cwnd creates a constant delay, it may not create a constant loss rate (e.g., when the
loss rate is less than one loss per window). Thus, we may need cwnd variations to maintain
a persistent loss rate even when the target and current loss rates are equal.

Other design considerations. A complete the CCA needs other decisions including: (O1)
how to aggregate multiple statistic samples, (O2) how long to measure the samples, (03)
time between cwnd updates, and (O4) how to compute any other estimates (e.g., bandwidth
or RTprop estimate). For instance, Copa computes standing RTT by taking the “minimum”
(O1) over RTT samples in the last “half srtt” (standard smoothed RTT) (02). It updates
cwnd “every ACK” (03) and uses minimum RTT over last 10 seconds to estimate RTprop
(04). Alternatively, one can estimate RTprop using BBR’s RTT probes. Implementations
may also require other features like using rate instead of cwnd when the BDP is less than 1
packet [36]. Such details are orthogonal to contracts.

7 Empirical validation

We empirically validate the trends in metrics and tradeoffs predicted by contracts. For visual
clarity in plots, we only show a handful of contracts/CCAs. This section complements the
empirical results in § 3, § 4, and § 5; where we already showed performance issues and
contracts for a large set of CCAs including Sprout, PCC, Indigo, ICC, Astraea, AIMD on
delay (1IRMA, SMaRTT, STrack, etc.).

A. Agarwal et al.

Robustness error (lower is better) Unfairness (lower is better) Congestion growth (lower is better)

30 - 80 - T -

o] ’ o 1 o svift A = 1 /

=] g 2 60 3 2 o .7 g 107 il

< 20 4 ‘// i 1 1/s’ PR o] ¥

]] & 5 1 m vegas ° v o] »

= ° ., 2 40 o -7 N] b4

& 10 Al al B3 M e a7 n ° >

3 -] -

° r’. .;—.—-r‘"""r 8 20 A I B [e

< I m=8="E-a-—r-4—a-—-n-=% < 1 -7 - —m— 3 b FL1t == g EpyDry Py

Foo R I SR TEE SEE Sk =i aju - 5 o]wis
T T T T T T — T —— T
0 2 4 6 8 10 2 4 6 8 10 5 10 15 20

Jitter [~ Smin] Hop count Number of Flows

Figure 13 Contracts-based performance estimates match packet-level simulation. The markers
show empirical data and gray lines show performance estimated by contracts.
log-log scale. Note: markers may be hard to see because they overlap.

Figure 14 shows

Robustness error (lower is better) Unfairness (lower is better) Congestion growth (lower is better)

102 o ° B —
2 E oo o swift o 4T]
5 El ° ® i =]) o 25~ a ¥
©] P [d 1/s o 2 o 10' o Cad
E] 1 2~ 5 B vegas o A7 o E Fled
£ o 4 2= & -7 X ol
) El e~ wu® |50t 4 * s - Cwew® |0 1 % —
3 E Pty - 3 - o 100 o #=" T L
3 1.-- '__._-. 3 ® 1/\s - 2 3 P ._I""
< R = a—-% | £ o % | Y EE S _ - st Yo N
I N - et b _ 2-0-ct6"
(= 100 4 & _____ - —— - :______“___ - o] t___o__.-& & -
T T ———T . v v ——— : v ——T
100 10t 2x 100 3 x10% x 10° 6 x 10° 10! 10!

Jitter [~ Spmin] Hop count Number of Flows

Figure 14 Figure 13 on log-log scale for visual clarity.

Methodology. We use packet-level simulation and emulation. Simulations allow controlling
noise and isolating one source of tradeoff at a time where emulation always has ambient noise,
e.g., due to OS scheduling jitter. We use htsim [28] for simulation (also used in MPTCP [55],
NDP [27], EQDS [52]), and mahimahi [51], Pantheon [70], and mininet [17] for emulation.

In simulation only, for two reasons, we give oracular knowledge of RTprop to all CCAs.

First, CCAs like Swift target data center deployments where RTprop may be known. For
consistency, we provide RTprop to all CCAs. Second, CCAs like Vegas do not explicitly drain
queues resulting in misestimating RTprop and poor performance. We remove this source of
poor performance as this is not fundamental unlike the tradeoffs imposed by contracts. For
instance, Copa and BBR explicitly drain queues to estimate RTprop accurately (at least in
the absence of noise).

Note that we are validating negative results (i.e., tradeoffs). Simplifications only make the
validation stronger. If tradeoffs exist with oracular knowledge of RTprop, then performance
is only worse without it, e.g., under-estimation causes under-utilization, and over-estimation
increases congestion.

Simulation CCAs. We implement and test Swift [36] and Vegas [12]. For reference, we also
show 3 canonical (§ 6) contract implementations: 1//s, 1/s, and 1/s*, where s = delay =
RTT — RTprop. These avoid RTT-bias unlike vanilla Vegas/Swift, and use MIMD instead of
ATAD/AIMD. In the canonical CCAs, we update cwnd every 2 RTTs and aggregate delay
as the minimum over delay samples since the last cwnd update. To isolate the impact of
contract shape, we also tune the scale parameters symmetrically. All CCAs have the same
Smin = 1.2 us = 0.1 RTprop and Cpax = 100 Gbps = link capacity. Smax is then decided
by Chin and the contract shape.

Simulation scenarios. We set link capacity = 100 Gbps, RTprop = 12 us, packet size = 4
KB. These are default parameters in htsim for data-center deployments. In § 4 we defined
the metrics in to be unitless and the tradeoffs we showed exist for all choices of network

8:19

NINeS 2026

8:20

Contracts: A unified lens on CCA performance

=

o

o
Il

— R ubic v Copa t]] BBR
7} i Il A4 i] 4
s] 1. HE i
2 5] i l\ vl] "' dl" rfﬁ'w
"] 4’\1% n{ M| -
o 1n a4 - i
F 1 : “'J"‘I-..""-"-I v ‘*l 7 b
0 _| T T T T T T - T T T T T
0 200 0 200 0 200
Time (s) Time (s) Time (s)

Figure 15 Robustness error. Cubic starves the orange/green flows that do not witness jitter.
Copa starves the blue flow that witnesses jitter. BBR starves the blue flow with the smallest

RTprop.

.2 c
=] opa *
©
1024 = BBR » gy
a % Cubic " _,l-—’-——r
= 1 d’—
@ 10! = . R G S Sy S
- A _A__A L
2 A A
F o100 4 #%7
T T T T T T T
2 4 6 8
Hops

Figure 16 Unfairness. Grey lines show y = x and y = 2%. Copa matches the unfairness

predicted by its contract. BBR and Cubic are worse due to shift and RTT-bias.

parameters (link capacity, RTprop, etc.). Consequently, the specific parameter values are
of little importance and we could have used any other values as well. We set the buffer
size to be infinite to remove any effects of packet losses, since we use delay-based CCAs.
To measure robustness error, we use a dumbbell topology with 2 flows where one of them
witnesses noise. We inject controlled error by adding a hop that persistently delays packets
by “ds” ps, and vary ds. We do not include this in the RTprop provided to the CCAs. We
inject noise this way to show trends. In emulation, we show the impact of realistic noise. To
measure unfairness and congestion growth, we instantiate parking lot (with varying hops)
and dumbbell (with varying flow count) topologies respectively. For the CCAs we test,
generality is just the inverse of congestion growth (Table 3), so we do not show generality.

Simulation results. Empirical performance matches that estimated by contracts (Figure 13).
Swift’s RTT-bias causes slightly worse fairness and robustness than the equivalent “1/s2”
canonical CCA which removes the bias. Vanilla Vegas has RTprop-bias (instead of RTT-
bias). Since the RTprop is the same for all flows, the steady-state performance of Vegas is
the same as the canonical “1/s” CCA.

Emulation CCAs, scenarios, and results. We run Cubic [25], BBR [14] (Linux kernel
v5.15.0) and Copa [9, 7]. The empirical contract derivations (§ 3) already showed gener-
ality and congestion growth, e.g., increase in delay or loss rate with decreasing fair share
(increasing flow count). In Figure 15 and Figure 16, we show robustness and fairness. We
run flows for 5 mins on dumbbell and parking lot topologies with capacity = 100 Mbps,
buffer = 1 BDP, and describe RTprop and flow count below. Emulation does not scale
to data-center link speeds (unlike htsim). Here, our parameter choices align with Internet
deployments. Again, the tradeoffs are independent of the absolute parameter values and we
get qualitatively similar results with other values.

Note that noise in the raw signal may not create an equivalent amount of error in the
statistic used by the CCA. Hence, we do not see a persistent trend in robustness error

A. Agarwal et al.

with varying noise. To validate that robustness is an issue, we show that the CCAs incur
large throughput ratios (starvation) with small delay jitter. We inject jitter in two ways:
(J1) slightly different RTprops (3 flows with RTprop of 10, 20, and 30 ms), and (J2) ACK-
aggregation (3 flows with RTprop of 32 ms but 1 flow additionally witnesses 32 ms of ACK
aggregation). We emulate ACK-aggregation in the same way as Pantheon [70]. In Figure 15,
Cubic and Copa show starvation with J2 and BBR shows starvation with J1. Note, BBR’s
unfairness in J1 is different from RTT-unfairness in traditional CCAs [31, 25]. For BBR, a
small difference in RTprops leads to large unfairness that increases with the link rate [8].

Figure 16 shows unfairness on parking lot with 5 ms RTprop. Copa matches the trend
estimated by the contract. With BBR, the shape (derivative) of the contract is same as Copa.
However the shift and RTT-bias in BBR’s contract causes worse unfairness. For Cubic,
the throughput ratio should be at least hops*/3 (contract is rate = loss rate 07 [39]).
Reality is worse due to RTT-bias.

8 Working around the tradeoffs

As discussed in § 2, we believe the only way to work around the tradeoffs is to pick the
input/output of the contract in a way that decouples physical quantities (e.g., rate or delay)
from the contract. We show this for the four metrics.

Note that compound contract functions that take different shapes on different link rates
or switch the shape on the fly do not alleviate the tradeoffs. In the worst-case, all the
scenarios may occur simultaneously, e.g., multiple flows per hop on a parking lot topology
with noise.

Fairness. As mentioned in § 4, statistics that accumulate using max or min, like max
per-hop delay, decouple multi-bottleneck fairness, trivially ensuring max-min fairness.
However, such accumulation often relies on in-network support [64].

Congestion and robustness. The congestion growth metric describes growth in the
statistic and not congestion. Decoupling statistic and congestion allows independently
bounding congestion. For instance, [72] shows use of a PI controller to obtain different
ECN marking probabilities for the same queue buildup (i.e., different statistic for the
same congestion). Likewise, explicit communication in packet headers (using enough
precision) may eliminate noise to meet robustness [34].

Generality. The domain of the statistic limits generality. Existing CCAs encode fair
shares using a “unary” encoding. As proposed in [8], we can improve encoding efficiency
using a “binary” encoding that communicates fair shares over time—similar to deriving
multi-bit feedback from single ECN bit [24]. Another work around is coordinate the
“fraction of link use” (i.e., a quantity between 0 and 1) instead of “absolute fair shares”
(i.e., an arbitrarily large number). This reduces the range of output values that a contract
needs to support. BBR’s rate-limited mode does this [23], but BBR often operates in
cwnd-limited mode [65], without fully leveraging this workaround.

9 Limitations and future work

Improving expressivity. In defining contracts, we faced a tradeoff between expressivity
(breadth of statements we can make) and tractability (mathematically backing the state-
ments). We erred on the side of tractability to mathematically derive tradeoffs in Ap-
pendix A. For instance, our current definition makes assumptions about the network and
other flows. As a result, we are unable to reason about inter-CCA fairness. Due to similar

8:21

NINeS 2026

8:22

Contracts: A unified lens on CCA performance

reasons, we also found it hard to prove/disprove that contracts are necessary or sufficient
for fairness. Below, we describe the challenges, benefits, and possible approaches to improve
expressivity.

Challenges. Two CCAs may achieve fairness even when they have different contracts.
Consider Copa, it employs a delay-based contract when competing with itself, but it switches
to emulating Reno when it detects Reno flows. Even CCAs like Vegas, that employ a delay-
based contract all the time, may compete fairly with Reno depending on the network con-
ditions [43]. For instance, RED-based packet drops [20] create a mapping between queuing
delay and loss rates. If the loss-rate-based and delay-based fair shares match, then Vegas
and Reno may compete fairly.

Benefits. Improving expressivity can further guide CCA design. For instance, to be TCP-
friendly, BBRv3 [15] leaves “headroom” for loss-based CCAs. If contracts are necessary for
fairness, then it is better to explicitly follow Reno’s contract on detecting competing Reno
flows than leaving headroom which may or may not cause BBRv3 to follow Reno’s contract.

Approach. We hope to extend reasoning using the formal methods literature that also
uses contract-like abstractions to reason about distributed algorithms. For instance, [6]
defines contracts as a set of traces described using w—regular grammars, while we defined
contracts as a function.

Extending contracts and blueprints to cover more scenarios, metrics, and CCA design
nuances. Our current blueprints do not capture all scenarios that CCAs must handle, e.g.,
short flows, incast, micro-bursts [58, 32|, frequent flow arrivals and departures, or bursty
traffic. In such settings, flows may never reach steady state; nevertheless, we still desire
fairness guarantees for long-lived flows. Similarly, we do not model all metrics that may
be relevant to applications, such as flow or co-flow completion times. Supporting these
scenarios and metrics often requires complementary mechanisms beyond contracts, including
slow start, receiver- or credit-based control, and flow scheduling.

Moreover, while we showed that contracts determine key aspects of CCA performance,
they are not all-encompassing. Other design nuances can also significantly impact perform-
ance. For instance, CCAs periodically explore latent network parameters and smooth or
filter noise from raw congestion signals. Although these choices influence the observed ag-
gregate statistics and thus appear in the resulting contract, the contract itself does not
directly tell us how such mechanisms should be designed. Nevertheless, we believe that the
lens of contracts can help designers reason about these choices indirectly, by clarifying their
impact on steady-state behavior and tradeoffs.

In the future, we envision extending our blueprints into a living repository that incorpor-
ates these evolving scenarios, metrics, and design nuances, providing a comprehensive view
of CCA behavior. Outside CCA design and analysis, we believe a contracts-first approach
would also improve reverse-engineering and classification of CCAs in the wild [22, 19, 66, 48].

Network measurement. Measurement of workloads and network environments can guide
which metrics to prioritize in the tradeoff space. For instance, assessing fairness requires
understanding how often flows experience multi-hop congestion and the typical number of
flows or hops involved. Recent work [13] suggests that contention may be rare on the Internet,
implying fairness may be less critical in some contexts. For robustness, it would be useful to
quantify the size and frequency of non-congestive delays and losses. On the workload front,
we want to understand which network-level metrics correlate with application-level metrics.
For instance, [56] shows that unfairness is better for AI collectives.

A. Agarwal et al.

10

Conclusion

We showed that contracts determine key performance metrics, resulting in tradeoffs. We
identify pitfalls to avoid when designing CCAs. We hope that with our work, contracts will
be a conscientious design choice rather than an afterthought. Contracts should be a direct
consequence of desired steady-state performance, and rate updates should be a consequence

of desired reactivity/convergence time.

—— References

1

10

11

Vamsi Addanki, Oliver Michel, and Stefan Schmid. PowerTCP: Pushing the performance
limits of datacenter networks. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 51-70, Renton, WA, April 2022. USENIX Association.
URL: https://www.usenix.org/conference/nsdi22/presentation/addanki.

Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan Seshan. To-
wards provably performant congestion control. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), pages 951-978, Santa Clara, CA, April 2024.
USENIX Association. URL: https://www.usenix.org/conference/nsdi24/presentation/
agarwal-anup.

Anup Agarwal, Venkat Arun, and Srinivasan Seshan. Frcc: Towards provably fair and ro-
bust congestion control. In 23rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 26), Renton, WA, May 2026. USENIX Association.

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctep). In
Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, page 6374, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1851182.1851192.
Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis of dctcp: sta-
bility, convergence, and fairness. In Proceedings of the ACM SIGMETRICS Joint Inter-
national Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
11, page 7384, New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/1993744.1993753.

Ashwani Anand, Anne-Kathrin Schmuck, and Satya Prakash Nayak. Contract-based distrib-
uted logical controller synthesis. In Proceedings of the 27th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC ’24, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery. doi:10.1145/3641513.3650123.

Venkat Arun. venkatarun95/genericcc. [Online; accessed 2025-04-17]. URL: https://github.
com/venkatarun95/genericCC.

Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation in end-to-end conges-
tion control. In Proceedings of the 2022 ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
Amsterdam, Netherlands, 2022. Association for Computing Machinery.

Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based congestion control for the
internet. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 329-342, Renton, WA, 4 2018. USENIX Association. URL: https://www.
usenix.org/conference/nsdil8/presentation/arun.

D. Bansal and H. Balakrishnan. Binomial congestion control algorithms. In Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Society (Cat. No.01CHS37213), volume 2,
pages 631-640 vol.2, 2001. doi:10.1109/INFCOM.2001.916251.

Tommaso Bonato, Abdul Kabbani, Daniele De Sensi, Rong Pan, Yanfang Le, Costin Ra-
iciu, Mark Handley, Timo Schneider, Nils Blach, Ahmad Ghalayini, Daniel Alves, Michael
Papamichael, Adrian Caulfield, and Torsten Hoefler. Fastflow: Flexible adaptive congestion

8:23

NINeS 2026

https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1993744.1993753
https://doi.org/10.1145/1993744.1993753
https://doi.org/10.1145/3641513.3650123
https://github.com/venkatarun95/genericCC
https://github.com/venkatarun95/genericCC
https://www.usenix.org/conference/nsdi18/presentation/arun
https://www.usenix.org/conference/nsdi18/presentation/arun
https://doi.org/10.1109/INFCOM.2001.916251

8:24

Contracts: A unified lens on CCA performance

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

control for high-performance datacenters, 2024. URL: https://arxiv.org/abs/2404.01630,
arXiv:2404.01630.

L.S. Brakmo and L.L. Peterson. Tcp vegas: end to end congestion avoidance on a global
internet. IEEE Journal on Selected Areas in Communications, 13(8):1465-1480, 1995. doi:
10.1109/49.464716.

Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind Krishnamurthy, Aurojit Panda, Justine
Sherry, and Scott Shenker. How i learned to stop worrying about cca contention. In Pro-
ceedings of the 22nd ACM Workshop on Hot Topics in Networks, HotNets '23, page 229237,
New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3626111.
3628204.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.
Bbr: Congestion-based congestion control. ACM Queue, 14, September-October:20 — 53, 2016.
URL: http://queue.acm.org/detail.cfm?id=3022184.

Neal Cardwell, Ian Swett, and Joseph Beshay. BBR Congestion Control. Internet-Draft draft-
ietf-ccwg-bbr-01, Internet Engineering Task Force, October 2024. Work in Progress. URL:
https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/01/.

Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for conges-
tion avoidance in computer networks. Computer Networks and ISDN Systems, 17(1):1-14,
1989. URL: https://www.sciencedirect.com/science/article/pii/0169755289900196,
doi:https://doi.org/10.1016/0169-7552(89)90019-6.

Mininet Project Contributors. Mininet: An instant virtual network on your laptop (or other
pc) - mininet. [Online; accessed 2025-04-17]. URL: https://mininet.org/.

Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira. Pcc: Re-
architecting congestion control for consistent high performance. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 395-408, 2015.
Margarida Ferreira, Ranysha Ware, Yash Kothari, Inés Lynce, Ruben Martins, Akshay
Narayan, and Justine Sherry. Reverse-engineering congestion control algorithm behavior.
In Proceedings of the 2024 ACM on Internet Measurement Conference, IMC 24, page 401414,
New York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3646547.
3688443.

S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4):397-413, 1993. doi:10.1109/90.251892.
Sally Floyd, Mark Handley, Jitendra Padhye, and Jérg Widmer. Equation-based congestion
control for unicast applications. In Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, SIGCOMM ’00, page 4356,
New York, NY, USA, 2000. Association for Computing Machinery. doi:10.1145/347059.
347397.

Sishuai Gong, Usama Naseer, and Theophilus A Benson. Inspector gadget: A framework for
inferring tcp congestion control algorithms and protocol configurations. In Network Traffic
Measurement and Analysis Conference, 2020.

Google. bbr/Documentation/startup/gain/analysis/bbr__drain_gain.pdf at master
google/bbr, November 2024. [Online; accessed 14. Nov. 2024]. URL: https://github.com/
google/bbr/blob/master/Documentation/bbr_bandwidth_based_convergence.pdf.
Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari Balakrish-
nan. ABC: A simple explicit congestion controller for wireless networks. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20), pages 353-372,
Santa Clara, CA, February 2020. USENIX Association. URL: https://www.usenix.org/
conference/nsdi20/presentation/goyal.

Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed tcp variant.
SIGOPS Oper. Syst. Rev., 42(5):6474, July 2008. doi:10.1145/1400097.1400105.

Feixue Han, Qing Li, Peng Zhang, Gareth Tyson, Yong Jiang, Mingwei Xu, Yulong Lan, and
ZhiCheng Li. ETC: An elastic transmission control using End-to-End available bandwidth

https://arxiv.org/abs/2404.01630
http://arxiv.org/abs/2404.01630
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://doi.org/10.1145/3626111.3628204
https://doi.org/10.1145/3626111.3628204
http://queue.acm.org/detail.cfm?id=3022184
https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/01/
https://www.sciencedirect.com/science/article/pii/0169755289900196
https://doi.org/https://doi.org/10.1016/0169-7552(89)90019-6
https://mininet.org/
https://doi.org/10.1145/3646547.3688443
https://doi.org/10.1145/3646547.3688443
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/347059.347397
https://doi.org/10.1145/347059.347397
https://github.com/google/bbr/blob/master/Documentation/bbr_bandwidth_based_convergence.pdf
https://github.com/google/bbr/blob/master/Documentation/bbr_bandwidth_based_convergence.pdf
https://www.usenix.org/conference/nsdi20/presentation/goyal
https://www.usenix.org/conference/nsdi20/presentation/goyal
https://doi.org/10.1145/1400097.1400105

A. Agarwal et al.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

perception. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 265—
284, Santa Clara, CA, July 2024. USENIX Association. URL: https://www.usenix.org/
conference/atc24/presentation/han.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gianni
Antichi, and Marcin Wojcik. Re-architecting datacenter networks and stacks for low latency
and high performance. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, page 2942, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3098822.3098825.

Mark Handley, Costin Raiciu, Chih-Yuan Chang, and Mihai Brodschi. csg-htsim, November
2024. [Online; accessed 18. Nov. 2024]. URL: https://github.com/Broadcom/csg-htsim.
Stephen Hemminger and David S. Miller. [tcp]: Add tcp vegas congestion control module.
torvalds/linux@b87d856, 6 2005. [Online; accessed 2025-06-02]. URL: https://github.com/
torvalds/linux/commit/b87d8561d8667d221b728ccdcb18eb95b16a687b.

Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshifumi Nishida. RFC 6582: The Ne-
wReno Modification to TCP’s Fast Recovery Algorithm, 4 2012. [Online; accessed 20. Nov.
2024]. URL: https://datatracker.ietf.org/doc/rfc6582.

Janey C. Hoe. Improving the start-up behavior of a congestion control scheme for tcp. In
Conference Proceedings on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’96, page 270280, New York, NY, USA, 1996. Association
for Computing Machinery. doi:10.1145/248156.248180.

Mohammad Hosseini, Sina Darabi, Hannaneh B. Pasandi, Mohammad Nakhjiri, and Patrick
Eugster. Poison comes in small packages: Application-driven reexamination of datacenter
microbursts. Proc. ACM Meas. Anal. Comput. Syst., 9(2), June 2025. doi:10.1145/3727126.
Wanchun Jiang, Haoyang Li, Jia Wu, Kai Wang, Fengyuan Ren, and Jianxin Wang. Intro-
spective congestion control for consistent high performance. In Proceedings of the Twentieth
European Conference on Computer Systems, EuroSys ’25, page 428445, New York, NY, USA,
2025. Association for Computing Machinery. doi:10.1145/3689031.3696084.

Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high bandwidth-
delay product networks. SIGCOMM Comput. Commun. Rev., 32(4):89102, aug 2002. doi:
10.1145/964725.633035.

Frank Kelly. Fairness and stability of end-to-end congestion control®*. FEuropean Journal
of Control, 9(2):159-176, 2003. URL: https://www.sciencedirect.com/science/article/
pii/S0947358003702738, doi:https://doi.org/10.3166/ejc.9.1569-176.

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu, Behnam
Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David Weth-
erall, and Amin Vahdat. Swift: Delay is simple and effective for congestion control in the
datacenter. In Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’20, page 514528, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3387514.3406591.

T.V. Lakshman and U. Madhow. The performance of tcp/ip for networks with high
bandwidth-delay products and random loss. I[EEE/ACM Transactions on Networking,
5(3):336-350, 1997. doi:10.1109/90.611099.

Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul Kabbani, Vipin Jain,
Raghava Sivaramu, and Francis Matus. Strack: A reliable multipath transport for ai/ml
clusters, 2024. URL: https://arxiv.org/abs/2407.15266, arXiv:2407.15266.

Rodolfo I. Ledesma Goyzueta and Yu Chen. A deterministic loss model based analysis of
cubic. In 2013 International Conference on Computing, Networking and Communications
(ICNC), pages 944-949, 2013. doi:10.1109/ICCNC.2013.6504217.

Doug Leith and David S. Miller. tcp: tcp__vegas cong avoid fix 1 torvalds/linux@8d3a564, 12
2008. [Online; accessed 2025-06-04]. URL: https://github.com/torvalds/linux/commit/
8d3ab64da34e5844acad4f991b73f8cab12246b23.

8:25

NINeS 2026

https://www.usenix.org/conference/atc24/presentation/han
https://www.usenix.org/conference/atc24/presentation/han
https://doi.org/10.1145/3098822.3098825
https://github.com/Broadcom/csg-htsim
https://github.com/torvalds/linux/commit/b87d8561d8667d221b728ccdcb18eb95b16a687b
https://github.com/torvalds/linux/commit/b87d8561d8667d221b728ccdcb18eb95b16a687b
https://datatracker.ietf.org/doc/rfc6582
https://doi.org/10.1145/248156.248180
https://doi.org/10.1145/3727126
https://doi.org/10.1145/3689031.3696084
https://doi.org/10.1145/964725.633035
https://doi.org/10.1145/964725.633035
https://www.sciencedirect.com/science/article/pii/S0947358003702738
https://www.sciencedirect.com/science/article/pii/S0947358003702738
https://doi.org/https://doi.org/10.3166/ejc.9.159-176
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1109/90.611099
https://arxiv.org/abs/2407.15266
http://arxiv.org/abs/2407.15266
https://doi.org/10.1109/ICCNC.2013.6504217
https://github.com/torvalds/linux/commit/8d3a564da34e5844aca4f991b73f8ca512246b23
https://github.com/torvalds/linux/commit/8d3a564da34e5844aca4f991b73f8ca512246b23

8:26

Contracts: A unified lens on CCA performance

41

42

43

44

45

46

47

48

49

50

51

52

53

Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith Winstein, and Kun Tan.
Tack: Improving wireless transport performance by taming acknowledgments. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM 20, page 1530, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3405850.

Xudong Liao, Han Tian, Chaoliang Zeng, Xinchen Wan, and Kai Chen. Astraea: Towards
fair and efficient learning-based congestion control. In Proceedings of the Nineteenth European
Conference on Computer Systems, EuroSys ’24, page 99114, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3627703.3650069.

S.H. Low. A duality model of tcp and queue management algorithms. IEEE/ACM Transac-
tions on Networking, 11(4):525-536, 2003. doi:10.1109/TNET.2003.815297.

S.H. Low. Analytical Methods for Network Congestion Control. Synthesis Lectures on
Learning, Networks, and Algorithms. Springer International Publishing, 2022. URL: https:
//books.google.com/books?id=tYFyEAAAQBAJ.

Steven H. Low, Larry L. Peterson, and Limin Wang. Understanding tcp vegas: a duality
model. J. ACM, 49(2):207235, March 2002. doi:10.1145/506147.506152.

Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqgiang Xiong, Peng Cheng, Jiansong Zhang,
Enhong Chen, and Thomas Moscibroda. Multi-Path transport for RDMA in datacenters.
In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 357-371, Renton, WA, April 2018. USENIX Association. URL: https://www.usenix.
org/conference/nsdil8/presentation/lu.

Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic be-
havior of the tcp congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev.,
27(3):6782, July 1997. doi:10.1145/263932.264023.

Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an eye on congestion
control in the wild with nebby. In Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM 24, page 136150, New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3651890.3672223.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely: Rtt-
based congestion control for the datacenter. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM ’15, page 537550, New York, NY,
USA, 2015. Association for Computing Machinery. doi:10.1145/2785956.2787510.

J. Mo and J. Walrand. Fair end-to-end window-based congestion control. IEEE/ACM Trans-
actions on Networking, 8(5):556-567, 2000. doi:10.1109/90.879343.

Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James
Mickens, and Hari Balakrishnan. Mahimahi: Accurate Record-and-Replay for HT'TP. In
2015 USENIX Annual Technical Conference (USENIX ATC 15), pages 417-429, Santa Clara,
CA, July 2015. USENIX Association. URL: https://www.usenix.org/conference/atcl5/
technical-session/presentation/netravali.

Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa, Cristi Baciu, Mark Sil-
berstein, Georgios Nikolaidis, Mark Handley, and Costin Raiciu. An edge-queued datagram
service for all datacenter traffic. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 761-777, Renton, WA, April 2022. USENIX Associ-

ation. URL: https://www.usenix.org/conference/nsdi22/presentation/olteanu.

Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling tcp throughput: A
simple model and its empirical validation. In Proceedings of the ACM SIGCOMM 98 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer Communic-
ation, SIGCOMM ’98, page 303314, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/285237.285291.

https://doi.org/10.1145/3387514.3405850
https://doi.org/10.1145/3627703.3650069
https://doi.org/10.1109/TNET.2003.815297
https://books.google.com/books?id=tYFyEAAAQBAJ
https://books.google.com/books?id=tYFyEAAAQBAJ
https://doi.org/10.1145/506147.506152
https://www.usenix.org/conference/nsdi18/presentation/lu
https://www.usenix.org/conference/nsdi18/presentation/lu
https://doi.org/10.1145/263932.264023
https://doi.org/10.1145/3651890.3672223
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1109/90.879343
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://doi.org/10.1145/285237.285291

A. Agarwal et al.

54

55

56

57

58

59

60

61

62

63

64

65

66

Lucian Popa, Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Stoica. Faircloud: sharing
the network in cloud computing. In Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, HotNets-X, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/2070562.2070584.

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, and
Mark Handley. Improving datacenter performance and robustness with multipath tcp. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 266277, New York,
NY, USA, 2011. Association for Computing Machinery. doi:10.1145/2018436.2018467.
Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya Akella. Congestion
control in machine learning clusters. In Proceedings of the 21st ACM Workshop on Hot Topics
in Networks, HotNets '22, page 235242, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3563766.3564115.

K. K. Ramakrishnan, Sally Floyd, and David L. Black. RFC 3168: The Addition of Explicit
Congestion Notification (ECN) to IP, 9 2001. [Online; accessed 21. Nov. 2024]. URL: https:
//datatracker.ietf.org/doc/rfc3168.

Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo. Micro-burst in
data centers: Observations, analysis, and mitigations. In 2018 IEEE 26th International Con-
ference on Network Protocols (ICNP), pages 88-98, 2018. doi:10.1109/ICNP.2018.00019.
Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-Chan, Sean
Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob Cauble, Hassan M. G.
Wassel, Behnam Montazeri, Simon L. Sabato, Joel Scherpelz, and Amin Vahdat. 1rma: Re-
envisioning remote memory access for multi-tenant datacenters. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’20,
page 708721, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.
1145/3387514.3405897.

Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan. An exper-
imental study of the learnability of congestion control. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, page 479490, New York, NY, USA, 2014. Associ-
ation for Computing Machinery. doi:10.1145/2619239.2626324.

Rayadurgam Srikant and Tamer Basar. The mathematics of Internet congestion control.
Springer, 2004.

Ao Tang, Jiantao Wang, and S.H. Low. Counter-intuitive throughput behaviors in networks
under end-to-end control. IEEE/ACM Transactions on Networking, 14(2):355-368, 2006.
doi:10.1109/TNET.2006.872552.

Ultra Ethernet Consortium. Working Groups - Ultra Ethernet Consortium, December 2023.
[Online; accessed 18. Nov. 2024]. URL: https://ultraethernet.org/working-groups.
Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eugene Ng, Neal Card-
well, and Nandita Dukkipati. Poseidon: Efficient, robust, and practical datacenter CC via
deployable INT. In 20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 28), pages 255-274, Boston, MA, April 2023. USENIX Association. URL:
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao.

Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. Modeling bbr’s
interactions with loss-based congestion control. In Proceedings of the Internet Measurement
Conference, IMC ’19, page 137143, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3355369.3355604.

Ranysha Ware, Adithya Abraham Philip, Nicholas Hungria, Yash Kothari, Justine Sherry, and
Srinivasan Seshan. Ccanalyzer: An efficient and nearly-passive congestion control classifier.
In Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24, page 181196,
New York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3651890.
3672255.

8:27

NINeS 2026

https://doi.org/10.1145/2070562.2070584
https://doi.org/10.1145/2018436.2018467
https://doi.org/10.1145/3563766.3564115
https://datatracker.ietf.org/doc/rfc3168
https://datatracker.ietf.org/doc/rfc3168
https://doi.org/10.1109/ICNP.2018.00019
https://doi.org/10.1145/3387514.3405897
https://doi.org/10.1145/3387514.3405897
https://doi.org/10.1145/2619239.2626324
https://doi.org/10.1109/TNET.2006.872552
https://ultraethernet.org/working-groups
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://doi.org/10.1145/3355369.3355604
https://doi.org/10.1145/3651890.3672255
https://doi.org/10.1145/3651890.3672255

8:28

Contracts: A unified lens on CCA performance

67

68

69

70

71

72

David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. Fast tcp: Motivation, archi-
tecture, algorithms, performance. IEEE/ACM Transactions on Networking, 14(6):1246-12509,
2006. doi:10.1109/TNET.2006.886335.

Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated congestion
control. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM
’13, page 123134, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2486001 .2486020.

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis,
and Keith Winstein. Pantheon emulation result for scream and webrtc. 12 mbps bottleneck
with 30 ms rtprop and 1 bdp buffer, 4 2018. [Online; accessed 2025-05-26]. URL: https:
//pantheon.stanford.edu/result/2422/.

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis,
and Keith Winstein. Pantheon: the training ground for internet congestion-control research.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731-743, Bo-
ston, MA, 7 2018. USENIX Association. URL: https://www.usenix.org/conference/atc18/
presentation/yan-francis.

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan
Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. Congestion
control for large-scale rdma deployments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM ’15, page 523536, New York,
NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2785956.2787484.
Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. Ecn or delay: Lessons learnt
from analysis of dcqen and timely. In Proceedings of the 12th International on Conference on
Emerging Networking EXperiments and Technologies, CONEXT ’16, page 313327, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2999572.2999593.

https://doi.org/10.1109/TNET.2006.886335
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/2486001.2486020
https://pantheon.stanford.edu/result/2422/
https://pantheon.stanford.edu/result/2422/
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2999572.2999593

A. Agarwal et al.

A Tradeoff derivations

We show that metrics (M1) robustness and (M2) fairness are at odds with (M3) congestion
and (M4) generality. M1 & M2 require the contract to be gradual, while M3 & M4 require
the contract to be steeper. We derive these tradeoffs quantitatively. We assume the contract
function func has domain [Smin, Smax] and range [Crin, Cmax], 1-€.; Cmax = func(Smin), and
Cinin = func(Smax)-

Our strategy to derive the tradeoffs is as follows, choice of a metric puts constraints on
the contract, and this in-turn puts constraints on other metrics. So we fix one metric and
see what constraints it puts on other metrics.

The tradeoffs involving fairness depend on fold. We consider fold € {>, max, min}.
The tradeoffs exists for Y. We do not get tradeoffs for max and min, i.e., we can achieve max-
min fairness independent of requirements on robustness/generality. We also show derivation
steps for arbitrary fold, if future work wants to consider other statistics that accumulate
differently across hops.

A.1 M1 vs. M3: robustness vs. congestion growth

Say we want the robustness error factor to be at most €. > 1, then we compute a lower
bound on growth(n). We start from the definition of robustness error factor (Eq. 2), i.e.,
Vs.% < €. We evaluate it at s = Sppin, S = Smin + 05,8 = Smin + 2% ds,..., and
perform the following algebraic manipulations:

func(Smin) <e
func(Smin +9s) —
— Cnax = func(Smin) < €. * func(Smin + 9s)
< € % € % func(Smin + 2 * ds)
< e}f « func(Smin + k * 05)
Cmax
— o < func(Smin + k * ds) (8)
1 Chax
- func . > Sin + k *x0s (9)
€T
_ Cmax
. func 1(ek) Smin + k % Js
func ™ (Chax) Smin
func™! (C“;;“‘) S
€ min + k xds
th(ek) > T 10
= growth(e)) > Fanc (o) = S (10)
_ log(n)
func 1 (Cmax) Smin + Tog(e,) *0S
- th > 2 > - 11
growth(n) = func™ ! (Crax) Shnin ()

Note, we get Eq. 9 by taking func~! on both sides, the inequality flips as func and func !

are monotonically decreasing. We get the left inequality in Eq. 10 from the definition of
growth (Eq. 7). Eq. 11 shows that lower error factor implies higher signal growth. The
inequalities become equalities when (by substituting Spmin +k*ds by s in Eq. 8): func(s) =

s—S
Cmax €r

min

s

. This is same as the exponential contract from [8].

8:29

NINeS 2026

8:30 Contracts: A unified lens on CCA performance

A.2 M1 vs. M4: robustness vs generality

We compute an upper bound on % given we want the error factor to be at most ¢, > 1.

min

We start from Eq. 8, and substitute Syiy + &k * ds by Smax:

Cmax
k

T

< func(Smin + k * ds)
€

_ Smax —Smin

E)
- Cmaxer ° § func(smax) - CVmin
Cmax Smax —Smin

— S €r ds
Cvmin

Lower the robustness error, lower is the range of bandwidths we can support. The inequality
becomes equality for the exponential contract.

A.3 M2 vs. M3: fairness vs. congestion growth

We derive a lower bound on growth(n) given that we want the throughput ratio in parking
lot for k hops to be ratio*(k). For the parking lot ratio to be ratio*(k), we need:
func(s)

k. = ratio*(k
v e func(fold(s,s,...s)) ratio” (k)

Say, the maximum of LHS is achieved when the link capacity in the parking lot is C' = C* (k).
ratio*(.) and C*(.) are functions of k. For brevity, we drop the k, and refer to them as r*
and C* respectively. The statements are true for all positive k.

Instead of directly computing a constraint on growth(n), we first derive a constraint
on growth,.(n). This eventually constrains growth(n). Where, growth(n) is defined as

%. Le., growth(n) = maxc growth,(n) (from Eq. 7). Note, growth(1) =1 from

this definition. We will use this later.
Consider the execution of the contract (CCA) on a parking lot topology with & hops and
link capacity C*. In steady-state, we have:

o + 7 = C* same as Eq. 3, and,
T
2 —+* from the definition of 7* above.
Tk

On solving these, we get:
ro=C*/(r*+1) and, 7,=C"/(r*+1)

Say the aggregate statistic seen by flow f; in the parking lot is s; = func™!(r;). Then

growth,. (C*/r;) = func;:éfjl/(g:)/m) = funcﬁ(c*)' We define s* = func~!(C*), and sub-

stitute ¢ by 0. On rearranging, we get:

so = func™*(C*) - growth,. (C*/ry) = s* - growth. (r* + 1)

Likewise, s, = s* - growthe. (1 + 1/r)
In steady-state:

so = fold(sk, Sk, -,k times) same as Eq. 5, on substituting sg and s just computed, we get

= s - growthq. (1" + 1) = fold(s* - growtho. (1 + 1/7%),. .., k times)

A. Agarwal et al.

If multiplication distributes over accumulation, this is true for fold € {>_, max, min}, then:
growtho. (r* + 1) = fold(growth. (1 4+ 1/7%),..., k times)

We consider under different choices of fold, what constraint ratio* puts on growth... For
fold as max or min. We can vacuously meet this constraint for ratio* = 1 (corresponding
to max-min fairness), and there is no tradeoff. For fold = 3, the constraint becomes:

growtho. (r* + 1) = k - growth . (1 + 1/r*)

Let n = 7* 4+ 1 =ratio*(k) + 1, i.e., k = ratio* !(n — 1), where ratio*~! is the inverse of
ratio* then:

growth,, (n) = ratio* '(n — 1) - growth,. (1 + 1/(n — 1))

Since, func is decreasing, growth, is increasing for all C. So growth.(1+1/(n—1)) >
growth. (1) = 1. So, we get:

growth.(n) > ratio* !(n — 1)

If we want better fairness, we need ratio* to be slow growing, then ratio*~! is fast-growing,
and so growth. is fast-growing, and so congestion growth growth > growth,. needs to be
fast-growing.

For proportional fairness, ratio* (k) = k, and so growth(n) = O(n), this is met by Vegas.

For a-fairness, ratio*(k) = ¥k, and so growth(n) = O(n®), this is met by the contract

func(s) = .

A.4 M2 vs. M4: fairness vs. generality

We compute an upper bound on % given we want the throughput ratio in parking lot

for k hops to be at most ratio*(k).ml]?‘or the throughput ratio to be at most ratio*(k), we
need:

func(s)

Ve, k func(fold(s,s,...s))

< ratio*(k)

The derivation beyond this depends on fold. For fold € {max, min}, the above constraint
is vacuously true and there is not tradeoff. For fold =), we need:

Vs, k.func(s) < ratio*(k) - func(k * s)

Picking s = Shin, and k = %, we get:

min

Shax
func(Smin) < ratio*® <ma) - func(Smax)
Smin

Chne Sine
max < ratio* max

min Smin

Better fairness implies smaller ratio ratio*(.) and a smaller range of supported bandwidths.

For fairness to be at least as good as proportional fairness, we need ratio*(k) < k, or:

Vs, k. func(s) < ratio*(k)-func(kxs)<k-func(k*s)

8:31

NINeS 2026

8:32

Contracts: A unified lens on CCA performance

Substituting k = Spin/s, we get:

Smincmax

f <
unc(s) < .

Equality occurs when func(s) = M, which is the same contract as Vegas.

Likewise, for a-fairness, ratio*(k) = vk, and so % <2 % The equality occurs
for the contract: func(s) = L.

	1 Introduction
	2 Motivation (Why contracts?)
	2.1 Isn't this obvious? Why this paper?
	2.2 Avoiding mistakes using contracts

	3 Contracts
	3.1 Computing contracts
	3.2 Scope

	4 Metrics and tradeoffs
	4.1 Guidance on picking contract (D1)

	5 Learnings from contracts
	6 Canonical CCA dynamics (D2)
	7 Empirical validation
	8 Working around the tradeoffs
	9 Limitations and future work
	10 Conclusion
	A Tradeoff derivations
	A.1 M1 vs. M3: robustness vs. congestion growth
	A.2 M1 vs. M4: robustness vs generality
	A.3 M2 vs. M3: fairness vs. congestion growth
	A.4 M2 vs. M4: fairness vs. generality

