
OrbitalBrain: A Distributed Framework For
Training ML Models in Space
Om Chabra* #

Massachusetts Institute of Technology,
Cambridge, MA, USA

Chenning Li* #

Massachusetts Institute of Technology,
Cambridge, MA, USA

Kevin Hsieh #

Microsoft, Redmond, WA, USA
Santiago Segarra #

Rice University, Houston, TX, USA

Behnaz Arzani #

Microsoft, Redmond, WA, USA
Peder Olsen #

Microsoft, Redmond, WA, USA

Ranveer Chandra #

Microsoft, Redmond, WA, USA

Abstract
Earth observation nanosatellites capture high-resolution photos of the Earth in near real-time.
These images increasingly support ML applications that are critical for safety and response, such as
forest fire and flood detection. However, the downlink bandwidth is limited, resulting in days or
weeks of delay from image capture to training. In this work, we propose OrbitalBrain, an efficient
in-space distributed ML training framework that leverages limited and predictable satellite compute,
bandwidth, and power to intelligently balance data transfer, model aggregation, and local training.
Our evaluations demonstrate that OrbitalBrain achieves 1.52×-12.4× speedup in time-to-accuracy
while always reaching a higher final model accuracy compared to state-of-the-art ground-based
or federated learning baselines. Furthermore, our approach is complementary to satellite imagery
capturing and downloading, enhancing the overall efficiency of satellite-based applications.

2012 ACM Subject Classification Computing methodologies → Machine learning; Computer systems
organization → Distributed architectures; Networks → Network architectures

Keywords and phrases Satellite networks, Distributed machine learning, Federated learning, Earth
observation, In-orbit computing

Digital Object Identifier 10.4230/OASIcs.NINeS.2026.5

Acknowledgements We thank the NINeS reviewers and our shepherd Vyas Sekar for their valuable
feedback. We also thank Hari Balakrishnan, Mohammad Alizadeh, Weiyang Wang, Anton Zabreyko,
Ziqian Liu, and the MIT NMS group for participating in discussions. Om and Chenning are
supported by DARPA Contract HR001120C0191.

1 Introduction

Low Earth Orbit (LEO) nanosatellite constellations for Earth observation (EO) are growing
rapidly and now capture high-resolution, near-real-time imagery. Through the use of Machine
learning (ML), these images are turned into timely insights for various global issues, such as
climate change, pandemic response, and disaster relief [11, 14, 31, 102, 51].

Satellites currently follow the BentPipe model where satellites download captured images
to ground stations (GS) before being uploaded to the cloud, causing delays of multiple
days from image capture to ML model training [112, 41]. The bottleneck is the insufficient
downlink bandwidth between the satellites and the GSs. At maximum imaging capacity,
only 11.1% of captured images can be transmitted to the ground (§2.2.1). Even with image

∗ Equal contribution; this work was done during both authors’ internships at Microsoft.

© Om Chabra, Chenning Li, Kevin Hsieh, Santiago Segarra, Behnaz Arzani, Peder Olsen, and Ranveer
Chandra;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 5; pp. 5:1–5:33

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:omchabra@mit.edu
mailto:lichenni@mit.edu
mailto:kevin.hsieh@microsoft.com
mailto:segarra@rice.edu
mailto:behnaz.arzani@microsoft.com
mailto:pederao@gmail.com
mailto:ranveer@microsoft.com
https://doi.org/10.4230/OASIcs.NINeS.2026.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 OrbitalBrain: A Distributed Framework For Training ML Models in Space

compression, this only improves to 30.7% [39]. This downlink constraint will increase as GS
are costly (>$1 million) and difficult to scale due to regulatory issues [116]. Additionally,
LEO satellites only transmit data when they pass over a GS, which happens 4-6 times a day,
lasting up to 7 minutes [114, 112].

Instead of downlink-first BentPipe, ML training directly in space [81, 98] has been
demonstrated. Satellites are becoming equipped with onboard AI accelerators. Planet,
a leading EO company, launched multiple satellites equipped with NVIDIA Jetson GPUs
[121]. As satellite constellations grow larger and more interconnected, they open up new
opportunities for distributed intelligence that go beyond what a single satellite can achieve.

In this paper, we rethink ML training for EO constellations. OrbitalBrain trains directly
in the constellation: satellites collect their own data, train their own local model, and share
local insights by exchanging model weights and raw data directly with neighboring satellites.
This is governed by an orbit-aware predictive scheduler that allocates scarce energy and
bandwidth resources using orbital, power, and storage forecasts.

OrbitalBrain exploits three key insights:
1. Inter-Satellite Links (ISLs) are increasingly feasible. ISLs are now being deployed, with

commercial systems such as Planet’s Pelican-class satellites, the Galileo constellation,
and SpaceX Starlink’s optical ISLs [121, 128, 66, 58]. These allow satellites to directly
communicate with other neighboring satellites, providing hundreds to thousands of daily
communication opportunities compared to the 4-6 GS opportunities per day per satellite
(Fig. 1).

2. Single-commercial governance permits raw-data exchange1. In traditional cross-organizational
FL, privacy is a major concern, enforcing only the sharing of model weight updates [85].
However, training within a single commercial operator allows the direct transfer of raw
data in a single constellation (e.g., within Planet).

3. Predictability makes a priori scheduling under constraints viable. In §2, we show that
nanosatellites face distinct constraints such as limited power, communication, and storage
resources, which without careful consideration, make existing naive solutions suffer.
However, many of these are predictable: GS–sat link quality can be forecast with median
error <1 dBm [116]; orbital state to within a few kilometers at 400 km altitude [36, 96];
and power generation from panel parameters and orbital geometry [100, 86, 56, 47, 108,
72, 23, 80, 115].

OrbitalBrain uses these three insights by co-scheduling three possible actions through a
constrained scheduling problem with a complexity analysis in §3.4, which approximates an
intractable MILP formulation (Appendix A). Our greedy planner considers the available
resources, breaking down potential actions in each scheduling window:

1. Local Compute (LC): In OrbitalBrain, each satellite starts by training its own (or
fine-tuning an existing) model with unique insights based on its own captured images.

2. Model Aggregation (MA): A satellite’s locally trained model will be biased and must
be combined with multiple other satellites. OrbitalBrain merges these local models in orbit
over ISLs, propagating improvements without waiting for ground contact. OrbitalBrain
quantitatively estimates the potential performance advantage of aggregation versus the
potential energy/time cost.

3. Data Transfer (DT): Each satellite’s local data is often skewed, resulting in low-quality
locally trained models. For instance, a satellite may have recently covered a large region

1 OrbitalBrain works cross-commercial without raw data transfer (DT) (§5.3)

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:3

of farmland while another may have covered a large urban area. OrbitalBrain selectively
exchanges raw data over ISLs between satellites whose local data complements each other.
OrbitalBrain uses a lightweight search to choose which pairs and how much to transfer
based on forecasted contact windows and estimated resource cost.

Evaluation Highlights. To evaluate OrbitalBrain, we develop a simulator for distributed
training in space which leverages data traces from a satellite-launch verified simulator [100].
We evaluate OrbitalBrain’s performance with two satellite constellations [1, 99] and two
space ML tasks [34, 137]. We compare it with five state-of-the-art (SOTA) centralized/FL
baselines [122, 119, 20, 88, 106]. We show that OrbitalBrain achieves a 1.52×-12.4× speedup
in time-to-accuracy while always achieving a higher final accuracy after 24 hours. We
further demonstrate that OrbitalBrain maintains consistent performance under various cloud
obstructions, compression performances, image resolutions, and varying numbers of partic-
ipating satellites. Finally, we further demonstrate that the best performance is achieved
when OrbitalBrain is collaboratively trained using both satellite-based and traditional ground
datacenter-based training.

Contributions. We make the following contributions:
We develop and release an open-source simulator for distributed ML training in space2.
We demonstrate and characterize the unique challenges posed by these new physical
constraints of nanosatellites for distributed ML training in space.
We formulate the problem for ML training in space under these constraints, focusing on
capitalizing satellite-specific trade-offs among data transfer, model aggregation, and local
training.
We introduce a general technique for estimating the utility of various satellite operations
and a decision process for allocating satellite resources for ML training.

Looking ahead, satellite counts will continue to surge while ground-station capacity and
downlink budgets scale far more slowly, widening the data-generation vs. downlink gap
[133, 92, 55, 10, 116]. In parallel, increasingly-larger AI models require more data and more
frequent updates to stay accurate in non-stationary environments [70, 111, 130, 57, 118].
This combination of more satellites, bigger models, and relatively flat downlink will make
“download-then-train” increasingly untenable. At the same time, we expect dense LEO
constellations with onboard AI accelerators and optical ISLs to become the norm, not the
exception [123, 68, 127, 17]. We believe that constellation-centric training, which aggregates
in orbit and selectively rebalances data over ISLs, offers a path to keep models current at
fleet scale.

2 Preliminaries

We outline a standard computational nanosatellite’s architecture and constraints (§2.1) and
discuss their impact on in-space ML training approaches (§2.2).

2.1 Physical Constraints of Nanosatellites
As an emerging satellite class, computational nanosatellites add onboard computing to small
and cost-effective satellites, enabling real-time insights in space [41, 112]. Our nanosatellite
model comprises solar array charging, state machine initiation, energy-driven operation

2 https://github.com/microsoft/OrbitalBrain

NINeS 2026

5:4 OrbitalBrain: A Distributed Framework For Training ML Models in Space

(a) # of GS-sat connections (b) # of Cross-sat connections (c) Link bandwidth capacity
Figure 1 Physical constraints (Links): The number of active communication links varies over

time, constrained by bandwidths 100 Mbps.

transitions, available capacitor power assessment, and operation viability evaluation based on
energy and communication constraints [41]. Our satellite power model relies on a public orbital
simulator (reparametrized for EO), CosmicBeats, chosen for its verified communication,
power, and data storage models through an actual nanosatellite launch [101].

We identify three physical constraints of nanosatellites that are crucial for space-based
and ground-based training, though prior work significantly simplifies these constraints.

Energy. Satellites depend on solar power, leading to constrained energy availability
over time, as seen in the energy trace of a Planet satellite. All satellite operations,
including capturing images, communicating with ground or other satellites, and running
or training ML models, must consider energy availability. We model the onboard computer
as an NVIDIA Jetson Orin Nano 4GB, whose volume and power consumption fits a
nanosatellite [41]. A model of how much energy each component of a satellite requires
can be found in Appendix B—highlights include 50W required for a satellite to download
data to a ground station [45], 7.5W for an Orin Nano [49], and only 7W generated from
the solar panel [41].

Link States. A satellite and a ground station communicate only when the satellite
passes over the ground station (GS-sat connections). For GS-sat link modeling, we follow
the model reported by Planet [45]. Similarly, ISLs are viable only when two satellites
are close enough and have a line-of-sight (cross-sat connections). We assess the average
number of active links over 5-minute windows across satellites and the distribution of
link bandwidths (Figure 1a-1c). Our findings indicate: (a) the number of active links
significantly decreases when incorporating energy constraints (energy and link constraints
are dependent); (b) the median bandwidth for both GS-sat links and ISLs is around 100
Mbps, but ISLs exhibit higher variance due to the constantly changing relative positions
for a pair of satellites.

Data Availability and Heterogeneity. LEOs have limited storage capacity for imagery,
and different satellites can possess significantly diverse images as they each follow a unique
trajectory. For instance, a satellite recently traveled over farmland versus a dense urban
area. In our study emulating a public real-world dataset, fMoW [34], we observe time-
varying data availability, and the number of available labels also fluctuates over time
(Figure 2a-2b). This high skew poses challenges for distributed training [84, 134, 62] as
it biases local training, making global model convergence difficult.

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:5

(a) # of available samples (b) Unbalanced data labels

Figure 2 Physical constraints (Data): The number of available data samples and labels fluctuates
over time (non-i.i.d).

2.2 Effects of Physical Constraints on ML Training
We explore how these unique characteristics of energy, communication, and data availability
constraints influence SOTA ground-based and space-based training approaches.

2.2.1 Impact on Ground-Based Training.
Modern constellations depend on the BentPipe architecture [122] involving sending control
commands to satellites and transmitting data back to Earth. However, downloading all
high-resolution imagery to the ground is becoming increasingly difficult due to limited and
intermittent bandwidth [2, 116].

To illustrate this, we model Planet’s constellation [99] along with the fMoW [34] dataset,
considering energy, link, and data availability constraints (§2.1). Illustrated in Table 1, a
single image captured by Planet is 300 MB [114]. We find that only 42k images, or 12.7
TB, can be downloaded to the ground per day, a figure similar to the number reported
by Planet [43]. This means that if the constellation were at its full imaging capability, it
would take multiple days to download the entire dataset, making it difficult for time-sensitive
applications to achieve up-to-date ML models [14, 31, 87, 51]. This issue is further exacerbated
for applications requiring higher-resolution images. As satellites also face onboard storage
constraints (e.g., 360 GB for FLOCK [94]), they must delete older images. We find that
BentPipe struggles when it considers real-world physical constraints and has fewer images,
compared to the ideal case which allows all data to be sent to the ground immediately in
Table 1.

2.2.2 Impact on Space-based Training.
Prior works [119, 106, 30, 95] adopt federated learning for distributed ML training in space.
In these approaches, each satellite, acting as a client, retrieves the ML model from the ground
station and performs local ML training using its own data. The ground station, acting
as the central server, receives only the model weight updates from various satellites and
aggregates them to update the global ML model. This process is repeated iteratively until

NINeS 2026

5:6 OrbitalBrain: A Distributed Framework For Training ML Models in Space

Table 1 BentPipe’s performance under varying compression performances

Compressed Size Ideal 100 MB 200 MB 300 MB
Downlinked Images 363,563 111,737 76,586 42,384
Percent Downloaded 100% 30.7% 21.1% 11.7%

24-hour Accuracy 59.6% 50.9% 44.1% 43.4%

(a) Planet [50] (b) Spire [1]

Figure 3 Time-to-accuracy curves for prior SOTA FL proposals with all (solid) or simple (dashed)
constraints (§2.2.2).

the global model converges. Our analysis, focusing on SOTA FL benchmarks for general
resource-constrained FL, reveals that these approaches oversimplify key physical constraints
of satellites and have a model accuracy degradation of 10% to 40% during ML training
in space. Furthermore, while FL traditionally avoids data sharing across clients due to
privacy concerns [85], ML training in space allows for data sharing among satellites within
constellations, as a single company often manages them. These motivate OrbitalBrain.

We examine the effects of these physical constraints using three SOTA benchmarks:
AsyncFL (AFL) [119], FedBuff (FedB) [88], and FedSpace (FedS) [106]. We compare these
methods with the fMoW dataset and two different satellite constellations (Planet [26] and
Spire [27]). We consider two scenarios: one with simple constraints (i.e., GS-sat contact
window determined by orbital dynamics [106, 30, 95]) and another with all constraints on
energy, bandwidth, and data simultaneously (see Section 5.1 for evaluation details). All three
benchmarks experience significant performance degradation when subjected to the more
comprehensive practical constraints (Figure 3): the training becomes slow and unstable. This
degradation is due to (i) the limited and heterogeneous local training progress resulting from
energy constraints; (ii) the local model staleness caused by both link and energy constraints;
and

2.2.3 Image Compression.
A complementary approach to addressing the downlink bandwidth issue is to employ onboard
image compression techniques. These include single-image codecs (e.g., [3, 91, 5]), neural-
based autoencoders (e.g., [37, 135, 38]), and the removal of redundancies from historical

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:7

observations [48]. While these methods help mitigate the problem and can be part of the
solution, they only provide partial improvements. In Table 1, we analyze the result of varying
compression performances, assuming that compression requires no energy (an idealistic
assumption benefiting compression performance). We observe that even with a third [48] of
the amount of transmitted data, only 30.7% of data can be downloaded. In Figure 10e, we
evaluate integrating OrbitalBrain and BentPipe with compression techniques.

2.2.4 Satellite Predictability.

Our approach, like previous satellite edge-computing research [112, 116, 106], relies on the
ability to accurately forecast a satellite’s position a few (∼ 5) hours in advance [36, 96]. This
prediction is based on Two-Line Element sets (TLEs), which provide orbital parameters and
are routinely updated by official sources [26, 24]. Knowing the satellite’s position allows us
to also estimate its solar power generation [100, 86, 56, 47, 108, 72, 23, 80, 115]. For our
work, we assume that both the satellite’s orbital path and its power generation profile can
be accurately predicted.

2.3 On-orbit labeling and training

Satellites could rely on weakly-supervised, self-supervised, or semi-supervised pipelines that
produce labels (or pseudo-labels) onboard, which is a standard assumption in recent remote-
sensing learning systems and space ML evaluations [7, 12, 18, 21]. Concretely, one approach
is to carry compact expert (teacher) models that generate pseudo-labels for incremental
adaptation of a smaller student model in orbit [82, 97]. A complementary approach is
to exploit external weak supervision (e.g., geospatial priors, historical observations, or
cross-sensor corroboration) and refine these labels over time, which is natural in EO where
metadata and repeated coverage are abundant [35, 136, 93]. When label quality is uncertain,
a practical hybrid is to triage samples: satellites downlink only low-confidence, novel, or
high-utility examples for ground labeling, while the bulk of routine data is processed and
used for training in orbit [42, 113, 40]. Finally, recent proposals for dedicated in-space
AI infrastructure (e.g., Google’s Project Suncatcher) provide an alternative motivation for
training in space while surfacing similar design constraints around optical interconnects and
resource-aware scheduling [15, 54].
Summary. We find that the physical constraints are time-varying and interdependent.
These constraints present significant challenges for ground-based and distributed space-based
training approaches. It is essential to thoughtfully consider these constraints when developing
an effective distributed ML training solution to utilize the computational capabilities of
nanosatellites in space. Fortunately, most of these resource constraints can be predicted
using the satellites’ orbital dynamics and physical mechanics. This understanding informs
our design approach.

3 OrbitalBrain: System Design

Problem Formulation. Without loss of generality, we frame the problem of in-space
training under physical constraints as an optimization problem formally defined in Appendix
A which aims to maximize the ML convergence rate based on each satellite’s decisions
regarding model aggregation (MA), data transfer (DT), and local compute (LC). However,
as this optimization problem is computationally intractable due to its vast search space and

NINeS 2026

5:8 OrbitalBrain: A Distributed Framework For Training ML Models in Space

Figure 4 Overview of OrbitalBrain’s ML framework. The ground station will relay messages
between the cloud/datacenters on the ground (orange) and the satellites. There will be multiple
ground stations connecting to the cloud-not shown in this figure

the unclear relationship between different decisions and the accumulated effect on global
model accuracy, we propose a new system OrbitalBrain.
System Overview. To reduce the search space for optimizing this problem, we propose a
solution that disentangles the resource allocation for the computation, data transfer, and
model aggregator in an approximately greedy manner. Figure 4 shows the system overview
of our solution, OrbitalBrain, which consists of four main components:

1. The performance profiler (§3.1). This component aggregates each satellite’s informa-
tion at the cloud, calculating the compute utility of each satellite based on the statistics
of each satellite’s local training data.

2. The model aggregator (§3.2). The aggregator determines the feasibility and necessity
of inter-sat model aggregation by considering the trade-off between aggregation gain (e.g.,
per-satellite model staleness, training accuracy) and execution energy/latency cost.

3. The data transferrer (§3.3). The data transferrer considers the utility of a satellite
sharing data with other satellites, which is then compared against the compute utility to
determine the operation of each satellite (i.e., transfer data or local compute).

4. The executor (§3.4). The executor will generate the effective schedule for each satellite,
which is then relayed to satellites when they are in view.

This system runs on the cloud, relaying control messages to the satellite while in contact
with a GS, consistent with current satellite scheduling [73]. In OrbitalBrain, we primarily
utilize the cloud only as a scheduler and GS only to relay messages between satellites and
the cloud.

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:9

3.1 Guided Performance Profiler
OrbitalBrain makes scheduling decisions at the cloud by creating a ’profile’ for each satellite.
These are built by retrieving information from satellites currently connected to the ground
while performing estimations based on the orbital mechanism for the rest of the satellites.

With S denoting the set of satellites in the constellation, for every scheduling window3,
the cloud will collect or calculate the following for each satellite s ∈ S: (1) ηs, the model
staleness, the number of scheduling windows since s’s last model aggregation (see §3.2). (2)
|Ds|, the number of data samples the satellite used for local computation in the previous
window. (3) ncomp

s an estimation (based on the energy trace) of the number of data samples
to be computed in this window - roughly the amount of available energy divided by the
time of each training iteration (4) Loss(d), s’s local model training loss at the last ground
connection.

This component calculates the computational utility function to determine the global
model’s benefit to s performing local compute.

Utilcomp(s) = ncomp
s

√√√√ (ηs + 1)−a

|Ds|
∑

d∈Ds

Loss(d), (1)

Intuitively, the goal of this utility function is that a local model with higher staleness
(i.e. an older model) should contribute less to the global model, with some arbitrary decay
factor a > 0 (our experiments use a = 1). Additionally, this function emphasizes samples
that have a higher training loss (1

|Ds|
∑

d∈Ds
Loss(d)), i.e. are less explained by the current

model. This is in line with the notion of importance sampling used in ML [71, 8, 132], where
a more important client is typically determined by a larger gradient norm or training loss [74].
Finally, the utility is scaled by ncomp

s since there is more value if we anticipate that this
satellite will perform more computation in future rounds.

3.2 Model Aggregation (MA) across Satellites
OrbitalBrain determines the feasibility of aggregating all satellite’s profiled models with other
satellites over ISLs (aggregation is the process of combining locally trained models into a
single global model by averaging each client’s model weights).

By communicating through ISLs, this mechanism enables more continual aggregation
than only utilizing ground station (GS) connections. This can be seen in Figure 5a where the
GS-sat connections of Planet’s constellation for a whole day are shown. As time evolves, the
number of satellites in view of the ground (orange) fluctuates between 10 at 21h and 100 at
18h. Unfortunately, only approximately 1/3 of these satellites (pink) can actually establish
these GS-sat connections if we incorporate energy constraints (§2.1). Accordingly, most
satellites which have sufficient compute power (black), have no ability to gather new model
updates. This leads to a satellite spending energy to produce a stale, old model update.

The advantage of OrbitalBrain’s MA mechanism is shown in Figure 5b where from 4h-15h
and from 19h-25h OrbitalBrain has almost 4× more local updates when MA is enabled.

However, MA induces extra time and energy costs, reducing the computation efficiency
(the ratio of energy for computing relative to a satellite’s available energy) as shown in

3 All notations used in Section 3 can be found in Appendix C

NINeS 2026

5:10 OrbitalBrain: A Distributed Framework For Training ML Models in Space

(a) Limited GS-sat connections (b) MA enables GS-sat

(c) MA reduces computational efficiency (the per-
cent of available energy spent on compute) (d) MA utility varies with time

Figure 5 MA and its trade-off between extra time and energy on inter-satellite communications
and additional ground connectivity.

Figure 5c. For example, at 24h, only 20% of data samples can be processed because most
energy is used for inter-satellite MA.

To determine if MA is valuable in a given scheduling window, OrbitalBrain follows a
threshold-based process, comparing the MA-enabled rewards with the cost in energy and
time (we also ensure that MA can complete in a given scheduling window). This component
utilizes the predictable orbit and energy (§2.2.4) to find (1) Sc, the set of satellites which
in this scheduling window have sufficient compute power, and (2) Scc, a subset of Sc only
including the satellites with communication ability to the ground. Note that Sc \ Scc is
the set containing satellites with sufficient energy but no GS-sat connections. Additionally,
this calculation utilizes each satellite’s model’s staleness, ηs (§3.1), the current number of
scheduling windows since this satellite’s model was aggregated with the global model (will
be reset to 0 if MA occurs).

We determine if it is valuable to perform MA by testing:

Util(Sc \ Scc, ϵ)
Util(Scc, 1) > θ0(t + 1)−b, (2)

where Util(S, ϵ)=
(∑

s∈S ηs

|S|
+ 1

)−a∑
s∈S

ϵsUtilcomp(s).

The insight behind Eq 2 is that the utility of model aggregation, Util(Sc \ Scc, ϵ), should

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:11

(a) Distance to i.i.d (uniform label) data (b) Transferred images

Figure 6 OrbitalBrain makes each satellite’s data near i.i.d over time by transferring images across
them.

be larger than these satellite spending their energy on local compute Util(Sc, 1). For MA to
be beneficial, the ratio between these utilities should be larger than the term θ0(t + 1)−b

where θ0 is an initial threshold and b is a time-based decay factor. This threshold ensures that
at early epochs, satellites train their local model. As these models become more developed,
MA will be prioritized.

This threshold’s time-varying nature responds to the empirical observation that the value
of MA is larger at later stages of the training process. Figure 5d illustrates the utility ratio
in Eq (2) and the time-varying threshold based on Planet’s constellations.

Additionally, if MA is scheduled, OrbitalBrain determines which satellites should com-
municate by finding the shortest-path tree for Sc where the root is the satellite with the
most ISLs. Finding this tree is an O(|I| log(|S|)) operation where |I| is the number of ISLs
(|I| < |S|2) and |S| is the number of satellites.

3.3 Enabling Data Transfer (DT)
One problem that emerges from a satellite’s fixed orbit is that each satellite will not contain
all labels evenly. This causes local training to overfit to a satellite’s own label distribution
[84, 134, 62]. Most traditional FL approaches only rely on model aggregation to alleviate this
inbalance by averaging each device’s biased model weights [105, 88, 78]. This is primarily
motivated by the privacy settings that FL adheres to. However, we observe that since all
satellites in this framework are controlled by one company (i.e. Planet or Spire), directly
transferring data between satellites is permitted. This allows for direct averaging of labels
instead of expending energy training an unbalanced model which must later be averaged.

Our data transfer component first (1) calculates each satellite’s data utility, that is how
useful each satellite is to achieving balanced labels. (2) the usefulness of sharing data between
two satellites, and (3) determines between multiple satellites in view, which links should be
utilized.

The cloud scheduler retrieves the data distribution of each satellite when a satellite
connects with a ground station. It continues to keep track of the expected change in each
satellite’s distribution when DT is scheduled, correcting this estimation when a GS-sat
connection occurs.

Intuitively, a satellite s has a larger data utility if it has more balanced data and sufficient

NINeS 2026

5:12 OrbitalBrain: A Distributed Framework For Training ML Models in Space

energy for local computation:

Utildata(s) = ncollect
s (1 − Fdis(ℓs))ncomp

s (3)

where Fdis(ℓs) indicates the Jensen–Shannon divergence (JSD), a measure of the label
distances between a satellite’s current label distribution ℓs and the i.i.d (perfectly balanced)
label distribution. ncollect

s and ncomp
s are the numbers of data samples to be collected and

computed under energy constraints (§3.1).
The transfer utility for transferring data between two satellites depends on both the

transmitting and receiving satellite’s current label distribution, formulated as:

Utiltr(s, s′) = Fdis(ℓs′) − Fdis(nt
ss′

ℓs

|ℓs|
+ ℓs′), (4)

where nt
ss′ indicates an estimation of the number of Transferred data samples from s to

s′ if transfer was to happen-energy and storage permitting. The transfer utility is large if
after receiving the samples from s, s′ will have a smaller distance to the ideal i.i.d. data
distribution.

Finally, based on the data and transfer utilities, we compute the link utility for each
possible pair of satellites in view of each other, determining whether a selected link (a pair of
satellites) is the best possible, additionally ensuring that transferring data is more beneficial
than a satellite training on its own current data.

OrbitalBrain selects the link (s, s′) with the largest utility iteratively for data transfer
(s ̸= s′) or local computation (s = s′) and terminates when all remaining link utilities are
negative. A negative Utiltr(s, s′) means that data transfer cannot make the data distribution
of the destination closer to being i.i.d.

Utillink(s, s′) =
{

Utiltr(s, s′) Util∗data(s′) if s ̸= s′

ξ Utildata(s′) if s = s′
(5)

where Util∗data(s′) represents the data utility of satellite s′ after receiving the data samples
from s. ξ is a self-computation utility parameter that determines how much to emphasize
local training vs transferring.

Figure 6 verifies the effectiveness of OrbitalBrain’s data transfer strategy. With data
transfer, the distance to the i.i.d. data distribution (uniform label distribution) for each of
the Planet constellations decreases significantly over time, with a lower median value (from
0.21 to 0.12) in Figure 6a. Figure 6b shows the number of transferred images across those
satellites at each scheduling window, spanning from 20 to 500, which is determined by the
bandwidth of ISLs and the energy constraints.

3.4 Executor: Putting It All Together
We put all components together in Algorithm 1. The total runtime is O(S2log(S)) where S

is the number of satellites. In each scheduling window t of length Tt, the performance profiler
first retrieves the satellite information for profiling, including the training loss, staleness H,
energy trace E, on-board storage M , label distribution ℓ, and the link topology G (line 2
- O(S)). It updates the compute utility based on Eq. (1) (line 3 - O(S)) and detects each
satellite’s status under the energy constraints (line 4 - O(S)). Given the ISL connectivity
topology GISL, OrbitalBrain checks the MA feasibility and resulting compute efficiency (line
5 - O(S2log(S))). If deemed beneficial, it schedules the local training and MA sequentially
for those energy-sufficient satellites Sc, deriving the local model updates P (lines 6-8 - O(S)).

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:13

Algorithm 1 OrbitalBrain’s ML training framework (runs on the ground station)
Input: Time Steps T , Sat constellation S, GS set G
Output: Decision-making strategy for ∀ s ∈ S at each time window t ∈ T

1 Loop t ∈ T with a scheduling window Tt:
/* Step-1: Retrieve and update sat profiling */

2 Loss,H,E,M ,l,G = UpdateProfiling(S,G,t) // Eq (1)
3 Utilcomp(S) = UpdCompUtil(Loss,H,E,M) // Eq (1)
4 Sc, Scc = SatStatusDetection(S,E)

/* Step-2: Inter-sat MA feasibility check */
5 TMA,ϵ = ShortestPathTree(Sc,GISL)
6 If TMA < Tt and Eq (2) holds:
7 UpdateCompEfficiency(Sc, ϵ) // Fig 5c

/* Step-3: Schedule local training and MA */
8 P = ExecuteTraining(Sc, ∅)
9 Else :

10 Utillink = InitLinkUtil(Sc, E, M, l) // Eq (3) to (5)
11 St = ∅ // Init Link Util and DT sats
12 While ∃ Utillink(s, s′) > 0:
13 s, s′ = argmaxs,s′ Utillink(s, s′)
14 If s ̸= s′: St.add(s)
15 Utillink = UpdLinkUtil(Sc, E, M, l, s, s′)

/* Step-4: Schedule DT and local training */
16 P = ExecuteTraining(Sc \ St , St)

/* Step-5: Schedule comm model and data with the ground */
17 CommWithGround(P)

/* Step-6: Send model to Satellite */
18 UploadScheduleToSatellite()

The empty second argument in ExecuteTraining in line 8 indicates the absence of data
transfer. Otherwise, it allocates compute/communication resources for data transfer based
on the computed link utility iteratively (lines 9-15 - O(S2)). It then schedules the local
computation and data transfer for different satellites (line 16 - O(S)). Finally, it schedules
when local model updates and training statistics (implicit in P) are sent to the ground to
update the global model (line 17 - O(S)). Once this schedule is created on in the cloud, it
will be uploaded to a satellite when each satellite comes into contact with a ground station.

4 Implementation

We implement OrbitalBrain in Python (3, 556 lines) for orbital simulation and distributed
ML training in space. OrbitalBrain’s orbital simulation based on CosmicBeats [101] outputs
the energy traces, link topology, and data streamed for each satellite as the number of
data samples manipulated for different purposes, such as the images collected, transferred,
and computed at each scheduling window. Our ML simulator built on top of a federated
learning framework (FLUTE [46]) takes these traces to update the satellite profiles/link utility
for inter-sat communication and simulate distributed ML training in space under physical
constraints. OrbitalBrain can be easily incorporated with other FL frameworks such as
FjORD [61] and FedSEA [110]. We use OpenMPI [52] as the backbone for multi-worker
distributed ML training.

To make our simulator faithful to the real world, we build our orbital emulation on
CosmicBeats, which provides verified models for orbit propagation, contact opportunities,

NINeS 2026

5:14 OrbitalBrain: A Distributed Framework For Training ML Models in Space

power dynamics, and data/storage state; this framework has been validated against an actual
nanosatellite launch [104, 101, 100, 103, 29]. These models naturally yield scheduled ground-
station (GS)-to-satellite and cross-satellite connectivity graphs (we use 5-minute granularity
[104]). We assume that satellite positions (and thus line-of-sight (LOS) opportunities) are
predictable ahead from Two-Line Elements (TLEs), consistent with empirical accuracy
studies of NORAD/TLE-based propagation [36, 96, 116] and standard premises in satellite-
network scheduling [114, 106]. For GS-sat links, we parameterize bandwidth and energy
costs using reported Planet radio characteristics and measurements [44]. For Inter-Satellite
Links (ISLs), we model feasibility via range/LOS constraints and bounded link rates (100
Mbps). Overall, we believe these assumptions align with our target scenarios, and the
primary uncertainty for our simulator’s realism lies in how scarce energy and bandwidth
are allocated across local compute and data transfer under predictable orbital constraints
[59, 65, 129, 124, 41, 40, 113, 114, 89].

5 Evaluation

We evaluate OrbitalBrain’s performance with two satellite constellations on two space tasks.
The key results are:

Overall Performance. OrbitalBrain outperforms SOTA baselines for various space
tasks. It achieves 1.52×-12.4× speedup in time-to-accuracy with 1.9%-49.5% final model
accuracy improvement.
Ablation Study. OrbitalBrain optimizes the non-i.i.d data distribution and model
staleness effectively with data transfer and modal aggregation under physical constraints.
Robustness & Sensitivity. OrbitalBrain consistently performs well in various scenarios,
such as varying cloudy images, image compression & resolution, and participating satellites.
We also show effective collaborative learning by incorporating GS and satellites for ML
in space.
Approaching the Ideal Case. OrbitalBrain narrows the performance gap in comparison
to its ideal counterparts.

5.1 Methodology

Constellations, Tasks, Dataset. For the orbital emulation, we utilize 24-hour TLE traces
of Planet [26] (with 207 satellites) and Spire [27] (with 117 satellites). We employ the
locations of Planet’s 12 global ground stations [114]. We assess OrbitalBrain on two space
tasks.

Functional Map of the World (fMoW) [34] provides 360k RGB images captured by Digital
Constellations [90] in 363 UTM zones across the globe. We use DenseNet [63] and
calculate the top-1 accuracy for land function prediction among 62 categories.
So2Sat [137] collects 400k multi-spectral images from Sentinel-2 multi-spectral instrument
(MSI) [4], covering 43 cities. We use ResNet [60] and calculate the top-1 accuracy for
17-category climate zone classification.

We only train the final five layers of DenseNet-161 [63] (~23M parameters) and ResNet-50 [60]
(~16M parameters), which is comparable to ResNet-18 (~11M parameters). With the Jetson
Orin Nano 4 GB GPU [49], we achieve satisfactory inference speeds, with DenseNet-161
operating at 401 frames per second (FPS) and ResNet-50 at 621 FPS. These speeds are
well-suited for the usual satellite imaging rates of 0.3 FPS.

To emulate the data streaming process for each satellite as it orbits the Earth, we assign
each data sample to its associated geo-locations and rank them by their collection time for the

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:15

Space Tasks Dataset Model Const. BP SFL AFL FedB FedS OrbitalBrain
Land Function

fMoW (62 classes) [34] DenseNet Planet 47.3% 3.3% 37.4% 17.8% 31.2% 52.8%
Recognition Spire 50.2% 5.6% 24.2% 14.7% 18.0% 59.2%

Climate Zone
So2Sat (17 classes)[137] ResNet Planet 46.0% 10.5% 17.8% 14.8% 10.5% 47.9%

Recognition Spire 43.0% 9.4% 35.1% 20.6% 19.2% 47.1%
Table 2 OrbitalBrain improves the final test accuracy after 24 hours over all five baselines, under

various space tasks, ML models, and satellite constellations.

same location. Each satellite collects several data samples under its energy constraints while
orbiting the Earth in each window. Similar to the vast majority of FL work [69], we assume
the satellite generates labeled data for ML training using unsupervised or semi-supervised
techniques [6, 22, 13, 19].
Baselines and Metrics. We implement and compare five baselines with OrbitalBrain under
satellites’ physical constraints, including the centralized training (i.e., BentPipe (BP) [122])
and four FL approaches (i.e., AsyncFL (AFL) [119], SyncFL (SFL) [20], FedBuff (FedB) [88],
and FedSpace (FedS) [106]). In SyncFL [20], the GS waits for the local gradients from a
certain number of non-straggler satellites (50%) before updating and distributing its global
model. In contrast, GS in AsyncFL updates the global model at its best efforts whenever
local gradients are available from satellites. FedBuff balances the SyncFL and AsyncFL by
buffering the local gradients from satellites and updating the global model only when its
size reaches a threshold B (default 32). The SOTA ML framework in space, FedSpace,
dynamically schedules model aggregation based on the deterministic connectivity and its
performance estimation from model staleness.

Our primary performance metric is time-to-accuracy [74, 76], which comprises the final
test accuracy of the global ML model and its training wall clock time. Specifically, we
calculate the final model accuracy by averaging the test accuracy over the last five scheduling
windows. We measure OrbitalBrain’s wall clock time required to achieve the final test accuracy
of the baselines, enabling us to determine its speedups over them (Table 3).
Parameter Setting. We set the orbital sampling period Tt (scheduling window) as 5 mins.
Each satellite has an onboard storage of 360GB [94] to store the imagery data with the size
of 200MB and 400MB for fMoW [34] and So2Sat [137]. Once reaching 90% of its storage, the
satellite will delete 50% of the oldest data samples. We tune the hyperparameters of ML
training for different tasks, which yields minibatch sizes at 24 and 64 for fMoW and So2Sat,
with the learning rate of 5e-3 and 1e-3, respectively. We empirically determine OrbitalBrain’s
parameters throughout the evaluation, where the staleness decay factor a is 1 (Eq 1). The
initial process efficiency ϵ is 0.9 as setting up an ISL takes over 10 seconds [58] (Eq 2). We
have the initial threshold θ0 = 40 and decay factor b = 0.5 for the threshold-determined
model aggregation (line 5 in Algorithm 1). The self-computation utility is set at 20 for
inter-satellite data transfer (Eq 5).

5.2 End-to-End Performance
Table 2 and 3 summarize OrbitalBrain’s improvements in final test accuracy and speedups
with less wall clock time.
OrbitalBrain improves the final test accuracy with more i.i.d data. For the most
difficult task, fMoW, OrbitalBrain achieves much higher final test accuracy of 52.8% and
59.2% over existing baselines, with the improvement of 5.5%-49.5% on Planet and Spire.
Figure 7a and 7b show the time-to-accuracy curve for fMoW. fMoW’s high non-i.i.d data renders

NINeS 2026

5:16 OrbitalBrain: A Distributed Framework For Training ML Models in Space

(a) fMoW with Planet (b) fMoW with Spire

(c) So2Sat with Planet (d) So2Sat with Spire

Figure 7 Time-to-accuracy on fMoW and So2Sat.

a fluctuating trend for most baselines except the steady but slow SyncFL and BentPipe. In
contrast, OrbitalBrain allocates some satellites for inter-satellite data transfer instead of the
local computation to make data distribution more balanced for each satellite, resulting in a
more steady training process with higher final test accuracy.

Figure 7c and 7d shows that OrbitalBrain achieves similar steady training trends with
much higher test accuracy than the distributed ML baselines on the So2Sat dataset, under
Planet and Spire constellations. Compared to fMoW, So2Sat only has 17 labels for the
climate zone recognition, which favors BentPipe to train a good model even with much
fewer data samples collected in the ground stations. Therefore, OrbitalBrain only improves
BentPipe slightly, with a higher accuracy of 1.9% and 4.1% for climate zone recognition. We
attribute this to our inter-satellite model aggregation to reduce model staleness. With only
a few satellites connecting to the ground per window, satellites with a stale global model
degrade aggregation quality when downloading their local models to the ground. OrbitalBrain
sacrifices certain compute resources for inter-satellite communication to improve the quality
of global model aggregation with fewer stale model updates.

OrbitalBrain speeds up the global model training by enabling frequent model
aggregation across satellites. Table 3 presents the time it takes for OrbitalBrain’s to reach
each baseline’s final test accuracy after a 24-hr ML training. We make two observations.
First, OrbitalBrain achieves a robust speedup across various ML models, image types, and

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:17

Table 3 OrbitalBrain’s speedup of time consumption to reach the same final accuracy as baselines

Dataset Constellation BP AFL FedS

fMoW
Planet 1.55× 3.25× 4.33×
Spire 1.52× 8.73× 9.58×

So2Sat
Planet 2.22× 8.65× 12.42×
Spire 1.61× 3.21× 9.24×

Table 4 OrbitalBrain’s ablation study indicates the final test accuracy decrement and training
slowdown.

Constell. w/o Model Aggreg. w/o Data Transfer
Acc Slowdown Acc Slowdown

Planet 14.7%↓ 2.5× 11.3%↓ 2.2×
Spire 36.1%↓ 8.5× 0.3%↓ 1.0

constellations. For these two ML tasks, OrbitalBrain achieves higher speedup for fMoW and
So2Sat because these two datasets were captured from the Earth with greater diversity,
which leads to more difficult non-i.i.d. data issues for the baselines. Second, OrbitalBrain only
needs several rounds of training warm-up and its efficiency increases over time. OrbitalBrain
fully exploits the computation resources of all satellites with sufficient energy even if they
cannot communicate to the ground. Such an edge computing framework makes it start faster
than the centralized BentPipe [122], especially for the diverse fMoW dataset with much more
data labels.

5.3 Component-wise Analysis
To assess the effectiveness of OrbitalBrain’s key components, we evaluate two breakdown
versions of the system.
OrbitalBrain ensures the most up-to-date global model through inter-satellite
model aggregation. The omission of inter-satellite model aggregation (MA) leads to
a notable decrease in performance, as indicated by Table 4, which shows a reduction of
14.7% and 36.1% in the final test accuracy for the fMoW dataset. The time required for
the breakdown versions to achieve the same test accuracy is 2.5× to 8.5× longer. Figure
8 compares the performance of OrbitalBrain without inter-satellite MA (orange) to that of
AsyncFL (purple). Although OrbitalBrain without inter-satellite MA still slightly outperforms
AsyncFL, it does not reach the full potential exhibited by the complete OrbitalBrain (black).
An exception is the fMoW dataset with the Spire constellation, where the performance
of OrbitalBrain without MA converges with that of AsyncFL. This can be attributed to
the geographically widespread Spire constellation, which results in a reduced number and
bandwidth of inter-satellite links. Consequently, there is a significant decrease in the volume
of images transferred between satellites, leading to similar performance for both approaches.
OrbitalBrain optimizes each satellite’s data distribution by selectively substituting
local computation with data transfer. OrbitalBrain without DT (data transfer) expe-
riences a noticeable performance reduction. Table 4 shows that the degradation can reach
up to 11.3% in final accuracy and 2.2× in time-to-accuracy for OrbitalBrain without DT on
the Planet constellation. In the Spire constellation [27], OrbitalBrain without DT matches

NINeS 2026

5:18 OrbitalBrain: A Distributed Framework For Training ML Models in Space

(a) fMoW +Planet (b) fMoW +Spire

Figure 8 Breakdown of OrbitalBrain’s time-to-accuracy performance under different datasets and
constellations.

(a) OrbitalBrain reduces the model staleness.
(b) OrbitalBrain balancing data transfer and local
compute.

Figure 9 OrbitalBrain optimizes the data distribution and local model staleness.

AsyncFL’s training trend, as the well-distributed satellites collect balanced data, effectively
training a global model through model aggregation alone without DT.

OrbitalBrain reduces model staleness and utilizes compute resources. In Figure
9, we analyze the effectiveness of our MA and DT strategy utilizing fMoW and Planet. In
Figure 9a, we plot a CDF of each satellite’s model staleness at every scheduling window.
Model staleness is the number of scheduling windows since a satellite’s local model was
aggregated with the global model. We observe in 90% of the scheduling windows, each
satellite’s staleness was smaller than 8 scheduling windows (from 18). In Figure 9b, we
analyze when OrbitalBrain utilizes the DT process, observing that more satellites transfer
data at the beginning when the data distribution is more unbalanced. OrbitalBrain continues
to assign DT and local computing dynamically depending on how the distribution evolves,
fully exploiting available energy resources.

5.4 Robustness and Sensitivity
We demonstrate OrbitalBrain’s robustness across four distinct scenarios: 1) What is the
impact on space training when integrating both satellites and ground-based datacenter

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:19

(a) OrbitalBrain integrated with BentPipe (b) Participating satellites

(c) Distribution of cloud cover. (d) Time-to-acc with cloud cover

(e) Time-to-acc with varying lossless compressed
image sizes. (f) Time-to-accuracy with image resolutions.

Figure 10 OrbitalBrain’s performance when (a) collaborating with ground-based training, (b)
varying participating satellites, (c)(d) using cloudy images, and (e)(f) considering image sizes and
resolutions.

training? 2) How does the number of participating satellites affect OrbitalBrain’s strategies for
distributed training in space? 3) Is OrbitalBrain resilient to cloudy images collected by LEO
nanosatellites? 4) How does OrbitalBrain perform when dealing with various compression
image sizes and varying resolutions from heterogeneous sensors on nanosatellites? We use

NINeS 2026

5:20 OrbitalBrain: A Distributed Framework For Training ML Models in Space

fMoW [34]+Planet [26] in this study.
Collaboration between satellites and ground stations/datacenters. Although
OrbitalBrain is primarily designed for orbital edge computing, it also facilitates collaborative
training between satellites and traditional ground-based compute (either at a ground station
or in a cloud/datacenter). By combining model updates received from satellites with the
ground-based model using BentPipe (represented by dashed lines), Figure 10a shows that
both OrbitalBrain and FedSpace achieve a more stable training progression and higher final
accuracy for both satellite constellations. AsyncFL also reaches a higher final accuracy, albeit
with a more volatile trend, owing to the frequent integration of outdated models from the
satellites. In addition, OrbitalBrain ensures consistency between the ML model trained in
orbit and the one trained on the ground, thereby outperforming the other two baseline
methods even when including collaboration with BentPipe.
Impact of participating satellites. We vary the participation ratio in the constellation.
Figure 10b shows OrbitalBrain’s performance on Planet and Spire. As we see, OrbitalBrain
suffers significantly when only 30% satellites join the ML training. The reasons for this
are twofold. First, with fewer participating satellites, there are fewer model updates sent
to the ground station, which impedes the utilization of the imagery data collected by the
satellites. Second, a reduced number of satellites necessitates more orbital cycles to gather
data samples, thus decelerating the collaborative training efficiency of OrbitalBrain for a
global DNN model. OrbitalBrain demonstrates improved performance with higher numbers
of participating satellites. A participation rate of over 50% ensures satisfactory performance.
Impact of Cloudy images. A unique challenge for Earth observation is that some image
patches are obscured by seasonal snow or clouds [109]. Such image data must be either filtered
out or specifically processed for ML training. Figure 10c initially presents the proportion of
the fMoW dataset’s [34] image strips that are completely obscured by clouds, on a scale from
0 to 1 (only 40% of these images are affected by any cloud cover). We filter the fMoW images
using different cloud cover thresholds (i.e., 0.05 and 0.3), which results in 80% and 97% of
the total images being retained, respectively. Figure 10d depicts the training performance of
OrbitalBrain and AsyncFL. It is observed that AsyncFL’s performance becomes more erratic
with an increase in cloudy images (e.g., hours 10 and 23 for the purple curve). In contrast,
OrbitalBrain maintains consistent performance with a stable training trend over time by
facilitating inter-satellite data transfer. This data-sharing strategy helps mitigate the adverse
effects of excessive cloudy images on local model training.
Impact of compression performance. We evaluate the impact of a compressed image
size of 100MB, 200MB, and 300MB. We assume that compression requires no energy despite
multiple compression works [39] utilizing GPUs. Figure 10e shows a larger image slows
down the data downloading and transfer efficiency, resulting in training degradation. We
observe that both OrbitalBrain and BentPipe perform better as the compression performance
increases. We observe that OrbitalBrain with 100MB and 200MB outperforms all BentPipe
approaches. Additionally, we observe that OrbitalBrain at 300MB outperforms BentPipe at
the same compression ratio, almost achieving the same performance as BentPipe 200MB.
Impact of Varying Resolutions. We also examine OrbitalBrain and AsyncFL for imagery
data with various resolutions. fMoW [34] provides 360k images with a median ground sample
distance (GSD) of 0.5m [34]. To evaluate the impact of image resolutions, we randomly
select a certain number of satellites (e.g., 30%) and rescale their imagery data to a 4× larger
resolution. Figure 10f demonstrates the time-to-accuracy performance, which verifies the
necessity of data transfer for a steady training trend. With images of different resolutions,
AsyncFL suffers significantly (e.g., 15-20 hours for the pink and purple) while OrbitalBrain is

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:21

(a) fMoW +Planet (b) fMoW +Spire

Figure 11 OrbitalBrain vs. ideal BentPipe/AsyncFL.

resilient with overlapping training trends.

5.5 Comparison with the Ideal Cases
In this section, we propose two ideal baseline scenarios to showcase the effectiveness of
OrbitalBrain: (1) BentPipe-ideal assumes that each satellite observes i.i.d. data and downlinks
all collected samples to the ground with no link-capacity constraints. We assume this baseline
expends the same total energy as our full satellite constellation if it was to train a global
model on 10,000 samples. (2) AsyncFL-ideal also assigns i.i.d data to each satellite using
random data assignment. Each satellite consistently communicates with the ground for
global model distribution and aggregation.

We draw three conclusions from Figure 11: (1) Both BentPipe and AsyncFL experience
significant difficulties due to their non-i.i.d data and intermittent connections with the ground
for model aggregation, resulting in a substantial performance gap compared to their ideal
scenarios. (2) A centralized training method with sufficient data, such as BentPipe-ideal,
achieves the best performance (purple). However, it performs poorly when limited to non-
i.i.d data samples under link constraints (orange). (3) By facilitating inter-satellite model
aggregation and data transfer, OrbitalBrain optimizes data distribution and model staleness
for each satellite, bringing it closer to the AsyncFL-ideal.

6 Related Work

Resource-Constrained Federated Learning. A growing body of research in FL focuses
on its application in resource-constrained environments, such as the Internet of Things (IoT),
robots, and drones [119, 64]. Existing work typically targets a specific limited resource
(e.g., computation, memory, and energy) and proposes solutions to improve the efficiency
of that particular resource. For example, pruned or quantized models have been utilized
to reduce computation and communication overheads [67, 61, 75, 9]. Our work is largely
complementary to these approaches, as we examine the trade-offs of various operational
decisions to optimize the use of limited resources in a previously unexplored context.

Compared to conventional FL in mobile networks, the new scale of both the time and
the region traversed are much larger in the nanosatellite context. This is unlike prior works
in areas such as drones or mobile phones because these nanosatellites are subjected to their

NINeS 2026

5:22 OrbitalBrain: A Distributed Framework For Training ML Models in Space

orbital paths. Drones, however, are often remotely controlled and can move in new directions
[64]. This subjected orbital path presents a great opportunity for research as our system
leverages this property extensively (§2.2.4). Additionally, satellites have more prolonged
communication gaps (order of hours) while facing substantial transmission delays due to the
long distances involved (often requiring pre-computation of scheduling)[83].
Model Aggregation in Federated Learning. A large body of work studies different
aspects of FL [84, 69]. FL model aggregation can be broadly classified into Synchronous
FL (SyncFL) [20] and Asynchronous FL (AsyncFL) [88]. SyncFL ensures the convergence of
the global model [84, 77] by waiting for slower clients [69, 131], but this approach inevitably
results in increased latency. In contrast, AsyncFL [119, 125, 126] avoids stragglers to improve
time efficiency but must consider convergence analysis [33, 32] and model staleness for biased
aggregation [107, 28]. Our solution also takes into account the trade-offs between stragglers
and model staleness. Additionally, our system is more comprehensive, considering data
sharing, local training, and adherence to interdependent physical constraints — all designed
for the nanosatellite context.
Federated Learning in Space. FL has been investigated for use in space-based training [30,
95, 106], where each satellite only sends its local model updates to the ground, avoiding the
need to download high-resolution data. However, these studies either adopt simplistic orbital
assumptions or overlook certain constraints. For instance, FedSpace [106] only considers
satellite-to-ground station connectivity for communication, neglecting energy, storage, or data
streaming constraints. In contrast, we use real satellite traces to design a system adhering
to the physical constraints of satellites, asserting that multiple models of ours (energy, link,
storage) match reported data from actual satellite launches [45, 101, 94]. We utilize this data
to develop a first-of-its-kind ML training simulator using these traces, conducting extensive
comparisons with existing solutions in our evaluation. Our approach also differs from FL, as we
do not require data isolation for privacy concerns among satellites [105, 88, 78]. Consequently,
OrbitalBrain thoroughly leverages inter-satellite data transfer and model aggregation for
efficient ML training in space.
Orbital Edge Computing for Satellites. The concept of orbital edge computing [41, 39,
112, 114] involves equipping satellites with computing devices to derive insights in space,
which has been implemented in multiple real satellite missions [53, 121]. These satellites are
often equipped with new advancements in radiation shielding [120] and error-correcting codes
[117]. Additionally existing inference pipelines [41, 112] focus on running image filtering or
ML inference on satellites, while our work targets more complex training tasks to keep these
edge models up-to-date.

7 Conclusion

Training ML models in space offers a promising alternative to conventional training, especially
in the era of rapidly growing LEO nanosatellites. We develop a simulator for distributed
ML training in space, demonstrating the physical constraints of satellites pose significant
challenges. We introduce OrbitalBrain, a framework that balances trade-offs among data
transfer, model aggregation, and local training. OrbitalBrain estimates the utility of various
operations using predictable physical constraints and local training statistics. Evaluations
across two space ML tasks and two satellite constellations reveal OrbitalBrain achieves a 1.52×-
12.4× speed-up in time-to-accuracy while always achieving a higher final model accuracy
over existing centralized and federated learning baselines. We hope our findings, simulator,
and datasets encourage further research to address this emerging problem.

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:23

References
1 Spire global nanosatellite constellation. https://www.eoportal.org/satellite-missions/

spire-global, 2017.
2 Planetscope - Dove Satellite Constellation (3m). https://www.satimagingcorp.com/

satellite-sensors/other-satellite-sensors/dove-3m/, 2021.
3 Masud Ibn Afjal, Md. Al Mamun, and Md. Palash Uddin. Band reordering heuristics for lossless

satellite image compression with 3d-calic and CCSDS. J. Vis. Commun. Image Represent.,
59:514–526, 2019.

4 European Space Agency. Sentinel-2 msi user guide. In https: // sentinel. esa. int/ web/
sentinel/ user-guides/ sentinel-2-msi , Retrieved in 2022.

5 Bruno Aiazzi, Luciano Alparone, Stefano Baronti, and Cinzia Lastri. Crisp and fuzzy adaptive
spectral predictions for lossless and near-lossless compression of hyperspectral imagery. IEEE
Geosci. Remote. Sens. Lett., 4(4):532–536, 2007.

6 Peri Akiva, Matthew Purri, Kristin Dana, Beth Tellman, and Tyler Anderson. H2o-net:
Self-supervised flood segmentation via adversarial domain adaptation and label refinement. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
111–122, 2021.

7 Peri Akiva, Matthew Purri, Kristin Dana, Kristin Tellman, and Tyler Anderson. H2o-net:
Self-supervised flood segmentation via adversarial domain adaptation and label refinement.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2021.

8 Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio.
Variance Reduction in SGD by Distributed Importance Sampling. arXiv:1511.06481 [cs, stat],
2016.

9 Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. FedRolex: Model-heterogeneous federated
learning with rolling sub-model extraction. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

10 Arthur Anglin, Sarah Horn, Joey Couture, and Jennifer Steinmann. Earth ob-
servation: A catalyst for economic growth and sustainable development, Septem-
ber 2024. URL: https://www.deloitte.com/us/en/insights/industry/public-sector/
earth-observation-sustainable-economic-growth.html.

11 Bruno Aragon, Rasmus Houborg, Kevin Tu, Joshua B Fisher, and Matthew McCabe. Cubesats
enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote
Sensing, 2018.

12 Biplab Banerjee, Francesca Bovolo, Avik Bhattacharya, Lorenzo Bruzzone, Subhasis Chaudhuri,
and B. Krishna Mohan. A new self-training-based unsupervised satellite image classification
technique using cluster ensemble strategy. IEEE Geoscience and Remote Sensing Letters,
12(4):741–745, 2014.

13 Biplab Banerjee, Francesca Bovolo, Avik Bhattacharya, Lorenzo Bruzzone, Subhasis Chaudhuri,
and B Krishna Mohan. A new self-training-based unsupervised satellite image classification
technique using cluster ensemble strategy. IEEE Geoscience and Remote Sensing Letters,
12(4):741–745, 2014.

14 Panagiotis Barmpoutis, Periklis Papaioannou, Kosmas Dimitropoulos, and Nikos Grammalidis.
A review on early forest fire detection systems using optical remote sensing. Sensors, 2020.

15 Travis Beals. Exploring a space-based, scalable ai infrastructure system design. Google
Research Blog, November 2025. Accessed 2026-01-15.

16 Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu,
Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. Ekya: Continuous learning
of video analytics models on edge compute servers. In Proceedings of USENIX NSDI, 2022.

17 Nathaniel Bleier, Muhammad Husnain Mubarik, Gary R Swenson, and Rakesh Kumar. Space
microdatacenters. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 900–915, 2023.

NINeS 2026

https://www.eoportal.org/satellite-missions/spire-global
https://www.eoportal.org/satellite-missions/spire-global
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/dove-3m/
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/dove-3m/
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://www.deloitte.com/us/en/insights/industry/public-sector/earth-observation-sustainable-economic-growth.html
https://www.deloitte.com/us/en/insights/industry/public-sector/earth-observation-sustainable-economic-growth.html

5:24 OrbitalBrain: A Distributed Framework For Training ML Models in Space

18 Jessica Block, Mehrdad Yazdani, Mai Nguyen, Daniel Crawl, Marta Jankowska, John Graham,
Tom DeFanti, and Ilkay Altintas. An unsupervised deep learning approach for satellite
image analysis with applications in demographic analysis. In 2017 IEEE 13th International
Conference on e-Science (e-Science), 2017.

19 Jessica Block, Mehrdad Yazdani, Mai Nguyen, Daniel Crawl, Marta Jankowska, John Graham,
Tom DeFanti, and Ilkay Altintas. An unsupervised deep learning approach for satellite
image analysis with applications in demographic analysis. In 2017 IEEE 13th International
Conference on e-Science (e-Science), pages 9–18. IEEE, 2017.

20 Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al.
Towards federated learning at scale: System design. Proceedings of Machine Learning and
Systems, 2019.

21 Jules Bourcier, Gohar Dashyan, Jocelyn Chanussot, and Karteek Alahari. Evaluating the
label efficiency of contrastive self-supervised learning for multi-resolution satellite imagery.
arXiv preprint arXiv:2210.06786, 2022.

22 Jules Bourcier, Gohar Dashyan, Jocelyn Chanussot, and Karteek Alahari. Evaluating the
label efficiency of contrastive self-supervised learning for multi-resolution satellite imagery.
arXiv preprint arXiv:2210.06786, 2022.

23 A. Broccia. A simple solar irradiance profiling model for leo cubesats. arXiv preprint
arXiv:2103.11222, 2021. URL: https://arxiv.org/abs/2103.11222.

24 Tanner Campbell, Adam Battle, Dan Gray, Om Chabra, Scott Tucker, Vishnu Reddy, and
Roberto Furfaro. Stingray sensor system for persistent survey of the geo belt. Sensors,
24(8):2596, 2024.

25 Frank Cangialosi, Neil Agarwal, Venkat Arun, Srinivas Narayana, Anand Sarwate, and Ravi
Netravali. Privid: Practical,{Privacy-Preserving} video analytics queries. In Proceedings of
USENIX NSDI, 2022.

26 CelesTrack. Planet. In http: // celestrak. org/ NORAD/ elements/ table. php? GROUP=
planet& FORMAT= tle , Retrieved in 2022.

27 CelesTrack. Spire. In http: // celestrak. org/ NORAD/ elements/ table. php? GROUP= spire&
FORMAT= tle , Retrieved in 2022.

28 Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. Fedat: A
communication-efficient federated learning method with asynchronous tiers under non-iid data.
ArXivorg, 2020.

29 Tusher Chakraborty, Jayanth Ganesh SHENOY, Deepak Vasisht, Om Jit Singh CHABRA,
and Ranveer Chandra. Data traffic scaling for communication satellite, November 7 2024. US
Patent App. 18/313,265.

30 Hao Chen, Ming Xiao, and Zhibo Pang. Satellite-based computing networks with federated
learning. IEEE Wireless Communications, 2022.

31 Kejie Chen, Jean-Philippe Avouac, Saif Aati, Chris Milliner, Fu Zheng, and Chuang Shi.
Cascading and pulse-like ruptures during the 2019 ridgecrest earthquakes in the eastern
california shear zone. Nature communications, 2020.

32 Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous
federated learning. arXiv preprint arXiv:2007.06081, 2020.

33 Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous online federated
learning for edge devices with non-iid data. In Proceedings of IEEE International Conference
on Big Data (Big Data), 2020.

34 Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the
world. In Proceedings of IEEE CVPR, 2018.

35 Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the
world. In Proceedings of IEEE CVPR, 2018.

https://arxiv.org/abs/2103.11222
http://celestrak.org/NORAD/elements/table.php?GROUP=planet&FORMAT=tle
http://celestrak.org/NORAD/elements/table.php?GROUP=planet&FORMAT=tle
http://celestrak.org/NORAD/elements/table.php?GROUP=spire&FORMAT=tle
http://celestrak.org/NORAD/elements/table.php?GROUP=spire&FORMAT=tle

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:25

36 Brian Coffee, Rebecca Bishop, and Kerri Cahoy. Propagation of cubesats in leo using norad
two line element sets: Accuracy and update frequency. In AIAA Guidance, Navigation, and
Control (GNC) Conference, page 4944, 2013.

37 Vinicius Alves de Oliveira, Marie Chabert, Thomas Oberlin, Charly Poulliat, Mickael Bruno,
Christophe Latry, Mikael Carlavan, Simon Henrot, Frédéric Falzon, and Roberto Camarero.
Reduced-complexity end-to-end variational autoencoder for on board satellite image compres-
sion. Remote. Sens., 13(3):447, 2021.

38 Vinicius Alves de Oliveira, Marie Chabert, Thomas Oberlin, Charly Poulliat, Mickael Bruno,
Christophe Latry, Mikael Carlavan, Simon Henrot, Frédéric Falzon, and Roberto Camarero.
Satellite image compression and denoising with neural networks. IEEE Geosci. Remote. Sens.
Lett., 19:1–5, 2022.

39 Bradley Denby, Krishna Chintalapudi, Ranveer Chandra, Brandon Lucia, and Shadi A.
Noghabi. Kodan: Addressing the computational bottleneck in space. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2023.

40 Bradley Denby, Krishna Chintalapudi, Ranveer Chandra, Brandon Lucia, and Shadi A.
Noghabi. Kodan: Addressing the computational bottleneck in space. In Proceedings of ACM
ASPLOS, 2023.

41 Bradley Denby and Brandon Lucia. Orbital edge computing: Nanosatellite constellations as a
new class of computer system. In Proceedings of ACM ASPLOS, 2020.

42 Bradley Denby and Brandon Lucia. Orbital edge computing: Nanosatellite constellations as a
new class of computer system. In Proceedings of ACM ASPLOS, 2020.

43 Kiruthika Devaraj. Planet’s high speed downlink network: Employing agile aerospace to
download 20 TB daily imagery from the Dove constellation. LEOCONN, 2021.

44 Kiruthika Devaraj, Ryan Kingsbury, Matt Ligon, Joseph Breu, Vivek Vittaldev, Bryan
Klofas, Patrick Yeon, and Kyle Colton. Dove high speed downlink system. In Proceedings of
AIAA/USU Conference of Small Satellites, 2017.

45 Kiruthika Devaraj, Matt Ligon, Eric Blossom, Joseph Breu, Bryan Klofas, Kyle Colton, and
Ryan Kingsbury. Planet High Speed Radio: Crossing Gbps from a 3U Cubesat. In Small
Satellite Conference, 2019.

46 Dimitrios Dimitriadis, Mirian Hipolito Garcia, Daniel Madrigal Diaz, Andre Manoel, and
Robert Sim. Flute: A scalable, extensible framework for high-performance federated learning
simulations. arXiv preprint arXiv:2203.13789, 2022.

47 Jiang Dongsheng, Peng Mei, Yang Dong, Jing Yuanliang, and Du Qing. A solar array on
orbit output power prediction method for satellite. In Signal and Information Processing,
Networking and Computers: Proceedings of the 8th International Conference on Signal and
Information Processing, Networking and Computers (ICSINC), pages 128–136. Springer, 2022.

48 Kuntai Du, Yihua Cheng, Peder Olsen, Shadi Noghabi, and Junchen Jiang. Earth+: On-board
satellite imagery compression leveraging historical earth observations. In Proceedings of the
30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1, ASPLOS ’25, page 361–376, New York, NY, USA, 2025.
Association for Computing Machinery. doi:10.1145/3669940.3707222.

49 NVIDIA Edge Computing. An unprecedented edge ai and robotics platform. In https:
// www. nvidia. com/ en-us/ autonomous-machines/ embedded-systems/ jetson-orin/ , Re-
trieved in 2024.

50 Anna Escher, 2018. URL: https://techcrunch.com/2018/09/14/
inside-planet-labs-new-satellite-manufacturing-site/.

51 Ivan Franch-Pardo, Brian M Napoletano, Fernando Rosete-Verges, and Lawal Billa. Spatial
analysis and gis in the study of covid-19. a review. Science of the total environment, 2020.

52 Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra, Jeffrey M
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, et al. Open

NINeS 2026

https://doi.org/10.1145/3669940.3707222
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/

5:26 OrbitalBrain: A Distributed Framework For Training ML Models in Space

mpi: Goals, concept, and design of a next generation mpi implementation. In European
Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. Springer, 2004.

53 Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Batic, Léonie Buckley, Aubrey
Dunne, Chris van Dijk, Marco Esposito, John Hefele, Nathan Vercruyssen, Gianluca Furano,
Massimiliano Pastena, and Josef Aschbacher. The Φ-sat-1 mission: The first on-board deep
neural network demonstrator for satellite earth observation. IEEE Trans. Geosci. Remote.
Sens., 60:1–14, 2022.

54 Google. Project suncatcher explores powering ai in space. Google Blog, November 2025.
Accessed 2026-01-15.

55 Grand View Research. Earth observation market size, share | industry report, 2030. https:
//www.grandviewresearch.com/industry-analysis/earth-observation-market-report,
2025. Market report.

56 John Petrus Grey, Ian R Mann, Michael D Fleischauer, and Duncan G Elliott. Analytic model
for low earth orbit satellite solar power. IEEE Transactions on Aerospace and Electronic
Systems, 56(5):3349–3359, 2020.

57 Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks.
arXiv preprint arXiv:2004.10964, 2020.

58 Mark Handley. Delay is not an option: Low latency routing in space. In Proceedings of ACM
HotNets, 2018.

59 Mark Handley. Delay is not an option: Low latency routing in space. In Proceedings of ACM
HotNets, 2018.

60 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE CVPR, 2016.

61 Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris,
and Nicholas D. Lane. FjORD: Fair and accurate federated learning under heterogeneous
targets with ordered dropout. In Proceedings of NeurIPS, 2021.

62 Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. The Non-IID data
quagmire of decentralized machine learning. In Proceedings of the International Conference on
Machine Learning (ICML), 2020.

63 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE CVPR, 2017.

64 Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M. Hadi Amini. A survey on
federated learning for resource-constrained iot devices. IEEE Internet Things J., 9(1):1–24,
2022.

65 Rachel Jewett. Next starlink satellites will have inter-satellite links, shotwell says. Satellite
Today, August 2021. Accessed 2026-01-15.

66 Rachel Jewett. Next starlink satellites will have inter-satellite links, shotwell says.
In https://www.satellitetoday.com/broadband/2021/08/26/next-starlink-satellites-will-have-
inter-satellite-links-shotwell-says/, Retrieved in 2022.

67 Yuang Jiang, Shiqiang Wang, Bong Jun Ko, Wei-Han Lee, and Leandros Tassiulas. Model
pruning enables efficient federated learning on edge devices. CoRR, abs/1909.12326, 2019.

68 Antony Judice, Joel Livin, and Kanagaraj Venusamy. Research trends, challenges, future
prospects of satellite communications. In 2022 2nd International Conference on Advance
Computing and Innovative Technologies in Engineering (ICACITE), pages 1140–1143. IEEE,
2022.

69 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 2021.

https://www.grandviewresearch.com/industry-analysis/earth-observation-market-report
https://www.grandviewresearch.com/industry-analysis/earth-observation-market-report

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:27

70 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models, 2020. URL: https://arxiv.org/abs/2001.08361, arXiv:2001.08361.

71 Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. In Proceedings of ICML. PMLR, 2018.

72 M. Kenzhegarayeva et al. On-orbit degradation analysis of solar cells on nano-satellites in leo.
Acta Astronautica, 2023. doi:10.1016/j.actaastro.2023.04.005.

73 Bryan Klofas. Planet labs ground station network. 2016.
74 Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient

Federated Learning via Guided Participant Selection. In Proceedings of USENIX OSDI, 2021.
75 Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. FedMask: Joint

computation and communication-efficient personalized federated learning via heterogeneous
masking. In SenSys ’21: The 19th ACM Conference on Embedded Networked Sensor Systems,
pages 42–55. ACM, 2021.

76 Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: Fine-grained data and
system heterogeneity-aware client selection for efficient federated learning. In Proceedings of
ACM MobiCom, 2022.

77 Q Li, Z Wen, and B He. Federated learning systems: Vision, hype and reality for data privacy
and protection. arXiv preprint arXiv:1907.09693.

78 Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang. Differentially
private asynchronous federated learning for mobile edge computing in urban informatics. IEEE
Transactions on Industrial Informatics, 2019.

79 Michael J Magazine and Maw-Sheng Chern. A note on approximation schemes for multidi-
mensional knapsack problems. Mathematics of Operations Research, 1984.

80 James Paul Mason, Matt Baumgart, Bryan Rogler, Chloe Downs, Margaret Williams,
Thomas N. Woods, Scott Palo, Phillip C. Chamberlin, Stanley Solomon, Andrew Jones,
Xinlin Li, Rick Kohnert, and Amir Caspi. Minxss-1 cubesat on-orbit pointing and power
performance: The first flight of the blue canyon technologies xact 3-axis attitude determination
and control system, 2017. URL: https://arxiv.org/abs/1706.06967, arXiv:1706.06967.

81 Gonzalo Mateo-García, Josh Veitch-Michaelis, Cormac Purcell, Nicolas Longepe, Simon Reid,
Alice Anlind, Fredrik Bruhn, James Parr, and Pierre Philippe Mathieu. In-orbit demonstration
of a re-trainable machine learning payload for processing optical imagery. Scientific Reports,
13(1):10391, 2023.

82 Gonzalo Mateo-García, Josh Veitch-Michaelis, Cormac Purcell, Nicolas Longépé, Simon Reid,
Alice Anlind, Fredrik Bruhn, James Parr, and Pierre Philippe Mathieu. In-orbit demonstration
of a re-trainable machine learning payload for processing optical imagery. Scientific Reports,
13:10391, 2023. doi:10.1038/s41598-023-34436-w.

83 Bho Matthiesen, Nasrin Razmi, Israel Leyva-Mayorga, Armin Dekorsy, and Petar Popovski.
Federated learning in satellite constellations. IEEE Network, 2023.

84 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y
Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR,
2017.

85 Lorenzo Minto, Moritz Haller, Benjamin Livshits, and Hamed Haddadi. Stronger privacy for
federated collaborative filtering with implicit feedback. In Proceedings of ACM Conference on
Recommender Systems, 2021.

86 Ahmed Mokhtar, Mohamed Ibrahim, Mohamed E Hanafy, Fawzy H Amer ElTohamy, and
Yehia Z Elhalwagy. Developing a modeling environment of spacecraft solar array in low earth
orbit using real-time telemetry data. Franklin Open, page 100268, 2025.

87 NASA-IMPACT. Etci 2021 competition on flood detection. In https: // nasa-impact.
github. io/ etci2021/ , 2021.

NINeS 2026

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1016/j.actaastro.2023.04.005
https://arxiv.org/abs/1706.06967
https://arxiv.org/abs/1706.06967
https://doi.org/10.1038/s41598-023-34436-w
https://nasa-impact.github.io/etci2021/
https://nasa-impact.github.io/etci2021/

5:28 OrbitalBrain: A Distributed Framework For Training ML Models in Space

88 John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani
Malek, and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. arXiv
preprint arXiv:2106.06639, 2021.

89 Seoyul Oh and Deepak Vasisht. A call for decentralized satellite networks. In Proceedings of
the 23rd ACM Workshop on Hot Topics in Networks, pages 25–33, 2024.

90 Chris Padwick, Michael Deskevich, Fabio Pacifici, and Scott Smallwood. Worldview-2 pan-
sharpening. In Proceedings of the American Society for Photogrammetry and Remote Sensing
(ASPRS), 2010.

91 Barbara Penna, Tammam Tillo, Enrico Magli, and Gabriella Olmo. Progressive 3-D coding of
hyperspectral images based on JPEG 2000. IEEE Geosci. Remote. Sens. Lett., 3(1):125–129,
2006.

92 Claudio Persello, Jan Dirk Wegner, Ronny Hänsch, Devis Tuia, Pedram Ghamisi, Mila Koeva,
and Gustau Camps-Valls. Deep learning and earth observation to support the sustainable
development goals: Current approaches, open challenges, and future opportunities. IEEE
Geoscience and Remote Sensing Magazine, 10(2):172–200, 2022.

93 Claudio Persello, Jan Dirk Wegner, Ronny Hänsch, Devis Tuia, Pedram Ghamisi, Mila Koeva,
and Gustau Camps-Valls. Deep learning and earth observation to support the sustainable
development goals: Current approaches, open challenges, and future opportunities. IEEE
Geoscience and Remote Sensing Magazine, 10(2):172–200, 2022.

94 Planet. Planet imagery product specifications. In https://assets.planet.com/docs/combined-
imagery-product-spec-final-may-2019.pdf, 2022.

95 Nasrin Razmi, Bho Matthiesen, Armin Dekorsy, and Petar Popovski. Ground-assisted federated
learning in leo satellite constellations. IEEE Wireless Communications Letters, 2022.

96 Kathleen Riesing. Two line element sets of cubesats in leo: Accuracy assessment and estimation
techniques for improvement. In 29th Annual AIAA/USU Conference on Small Satellites, 2015.

97 Vit Ruzicka, Gonzalo Mateo-Garca, Chris Bridges, Chris Brunskill, Cormac Purcell, Nicolas
Longepe, and Andrew Markham. Fast model inference and training on-board of satellites. In
IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023.

98 Vit Ruzicka, Gonzalo Mateo-Garca, Gonzalo, Chris Bridges, Chris Brunskill, Cormac Purcell,
Nicolas Longépé, and Andrew Markham. Fast model inference and training on-board of satel-
lites. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium,
pages 2002–2005. IEEE, 2023.

99 Mike Safyan. Planet’s dove satellite constellation. Handbook of Small Satellites: Technology,
Design, Manufacture, Applications, Economics and Regulation, 2020.

100 Jayanth Shenoy, Om Chabra, Tusher Chakraborty, Suraj Jog, Deepak Vasisht, and Ranveer
Chandra. Cosmac: Constellation-aware medium access and scheduling for iot satellites. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pages 724–739, 2024.

101 Jayanth Shenoy, Om Chabra, Tusher Chakraborty, Suraj Jog, Deepak Vasisht, and Ranveer
Chandra. Cosmac: Constellation-aware medium access and scheduling for iot satellites. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pages 724–739, 2024.

102 Shraddhanand Shukla, Denis Macharia, Gregory J Husak, Martin Landsfeld, Catherine Lilian
Nakalembe, S Lucille Blakeley, Emily Caitlin Adams, and Juliet Way-Henthorne. Enhancing
access and usage of earth observations in environmental decision-making in eastern and
southern africa through capacity building. Frontiers in Sustainable Food Systems, 2021.

103 Vaibhav Singh, Tusher Chakraborty, Suraj Jog, Om Chabra, Deepak Vasisht, and Ranveer
Chandra. Exploiting satellite doppler for reliable and faster data download in iot satellite
networks. GetMobile: Mobile Computing and Communications, 27(4):11–14, 2024.

104 Vaibhav Singh, Tusher Chakraborty, Suraj Jog, Om Chabra, Deepak Vasisht, and Ranveer
Chandra. Spectrumize: Spectrum-efficient satellite networks for the internet of things. In
Proceedings of USENIX NSDI, 2024.

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:29

105 Jinhyun So, Ramy E. Ali, Başak Güler, and A. Salman Avestimehr. Secure Aggregation for
Buffered Asynchronous Federated Learning. arXiv:2110.02177 [cs, math, stat], 2021.

106 Jinhyun So, Kevin Hsieh, Behnaz Arzani, Shadi Noghabi, Salman Avestimehr, and Ranveer
Chandra. Fedspace: An efficient federated learning framework at satellites and ground stations.
arXiv preprint arXiv:2202.01267, 2022.

107 Michael R Sprague, Amir Jalalirad, Marco Scavuzzo, Catalin Capota, Moritz Neun, Lyman
Do, and Michael Kopp. Asynchronous federated learning for geospatial applications. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
2018.

108 B. Sumanth. Analysis of eclipse and sunlight durations for leo small satellites. International
Journal of Satellite Communications and Networking, 2019. URL: https://arxiv.org/abs/
1906.00456.

109 Gencer Sumbul, Arne De Wall, Tristan Kreuziger, Filipe Marcelino, Hugo Costa, Pedro
Benevides, Mario Caetano, Begüm Demir, and Volker Markl. Bigearthnet-mm: A large-scale,
multimodal, multilabel benchmark archive for remote sensing image classification and retrieval
[software and data sets]. IEEE Geoscience and Remote Sensing Magazine, 2021.

110 Jingwei Sun, Ang Li, Lin Duan, Samiul Alam, Xuliang Deng, Xin Guo, Haiming Wang, Maria
Gorlatova, Mi Zhang, Hai Li, et al. Fedsea: a semi-asynchronous federated learning framework
for extremely heterogeneous devices. In Proceedings of ACM SenSys, 2022.

111 Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks, 2020. URL: https://arxiv.org/abs/1905.11946, arXiv:1905.11946.

112 Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, and Deepak Vasisht. Known knowns and
unknowns: Near-realtime earth observation via query bifurcation in serval. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24), pages 809–824,
2024.

113 Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, and Deepak Vasisht. Known knowns
and unknowns: Near-realtime earth observation via query bifurcation in serval. In Proceedings
of USENIX NSDI, 2024.

114 Bill Tao, Maleeha Masood, Indranil Gupta, and Deepak Vasisht. Transmitting, fast and
slow: Scheduling satellite traffic through space and time. In Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking, pages 1–15, 2023.

115 Various. Review of cubesat electrical power systems. Discover Energy, 2025. URL: https:
//www.springernature.com/gp/journal/discover-energy.

116 Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra. L2d2: Low latency distributed
downlink for leo satellites. In Proceedings of ACM SIGCOMM, 2021.

117 Haoda Wang, Steven Myint, Vandi Verma, Yonatan Winetraub, Junfeng Yang, and Asaf
Cidon. Mars attacks! software protection against space radiation. In Proceedings of the 22nd
ACM Workshop on Hot Topics in Networks, pages 245–253, 2023.

118 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362–5383, 2024.

119 Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting
He, and Kevin Chan. Adaptive federated learning in resource constrained edge computing
systems. IEEE Journal on Selected Areas in Communications, 2019.

120 Debra Werner. Cosmic shielding works with aethero to protect nvidia jetson orin nx gpu.
2024.

121 Debra Werner. Pelican-2 & 36 superdoves arrived in vanden-
berg, california for launch. In https: // www. planet. com/ pulse/
pelican-2-36-superdoves-arrived-in-vandenberg-california-for-launch/ , 2024.

122 James Richard Wertz, Wiley J Larson, Douglas Kirkpatrick, and Donna Klungle. Space
mission analysis and design. Springer, 1999.

NINeS 2026

https://arxiv.org/abs/1906.00456
https://arxiv.org/abs/1906.00456
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://www.springernature.com/gp/journal/discover-energy
https://www.springernature.com/gp/journal/discover-energy
https://www.planet.com/pulse/pelican-2-36-superdoves-arrived-in-vandenberg-california-for-launch/
https://www.planet.com/pulse/pelican-2-36-superdoves-arrived-in-vandenberg-california-for-launch/

5:30 OrbitalBrain: A Distributed Framework For Training ML Models in Space

123 Chenyu Wu, Shuai Han, Qian Chen, Yu Wang, Weixiao Meng, and Abderrahim Benslimane.
Enhancing leo mega-constellations with inter-satellite links: Vision and challenges. IEEE
Wireless Communications, 2025.

124 Chenyu Wu, Shuai Han, Qian Chen, Yu Wang, Weixiao Meng, and Abderrahim Benslimane.
Enhancing leo mega-constellations with inter-satellite links: Vision and challenges. IEEE
Wireless Communications, 2025.

125 Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934, 2019.

126 Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated learning
on heterogeneous devices: A survey. arXiv preprint arXiv:2109.04269, 2021.

127 Erzhong Xue, Zhuoran Zhang, Junxiao Xue, Haitao Wang, Ivan Edmar Carvajal Roca, Zhiwen
He, Hui Zhang, Hua Wang, Zhiguo Wan, and Chao Li. Space computing: Architectures,
challenges, and future directions. Intelligent Computing.

128 Herwig Zech, Philipp Biller, Frank Heine, and Matthias Motzigemba. Optical intersatellite
links for navigation constellations. In Proceedings of the International Conference on Space
Optics (ICSO). SPIE, 2019.

129 Xiao Zeng, Ming Yan, and Mi Zhang. Mercury: Efficient on-device distributed dnn training
via stochastic importance sampling. In Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, 2021.

130 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision trans-
formers, 2022. URL: https://arxiv.org/abs/2106.04560, arXiv:2106.04560.

131 Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and Salman Aves-
timehr. Federated learning for internet of things: Applications, challenges, and opportunities,
2021. arXiv:2111.07494.

132 Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In Proceedings of ICML. PMLR, 2015.

133 Qiang Zhao, Le Yu, Zhenrong Du, Dailiang Peng, Pengyu Hao, Yongguang Zhang, and Peng
Gong. An overview of the applications of earth observation satellite data: impacts and future
trends. Remote Sensing, 14(8):1863, 2022.

134 Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. CoRR, abs/1806.00582, 2018.

135 Lei Zhou, Zhenhong Sun, Xiangji Wu, and Junmin Wu. End-to-end optimized image com-
pression with attention mechanism. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 2019.

136 Xiao Xiang Zhu et al. So2sat lcz42: A benchmark dataset for global local climate zones
classification. arXiv preprint arXiv:1912.12171, 2019.

137 Xiao Xiang Zhu, Jingliang Hu, Chunping Qiu, Yilei Shi, Jian Kang, Lichao Mou, Hossein
Bagheri, Matthias Häberle, Yuansheng Hua, Rong Huang, et al. So2sat lcz42: A benchmark
dataset for global local climate zones classification. arXiv preprint arXiv:1912.12171, 2019.

https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2111.07494

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:31

Appendix

A Problem Formulation

We formulate the general problem of distributed ML training under physical constraints
as a mixed integer linear programming (MILP) problem that maximizes the ML training
convergence rate based on satellites’ decisions on local training, data transfer, and model
aggregation that respect their physical constraints.
Assumptions. Given a satellite constellation, s ∈ Sm×1 and a set of ground stations
(GS), g ∈ Gn×1, we represent each satellite s by its two-line element set (TLE) via its orbit
parameters [26, 27], which can be predicted accurately within a kilometer if done a few
days in advance [116]. Given sufficient energy, a satellite can do the basic operations (e.g,
orbit control, traffic routing), sensing, computation, and communication. For example, it
can either transfer its data/model to its nearby satellites via inter-satellite links (ISLs) or
download them to the ground using RF-based GS-sat links, based on the connectivity status
and physical constraints (e.g., energy, storage, streaming). In contrast, we assume the ground
stations have unlimited computation resources and communicate with other ground stations
easily without any restrictions [106].
Optimization Goal. Our solution operates in discrete steps, dividing time into a set of
consecutive scheduling windows T . In each window (e.g., 5 minutes) Tt for t ∈ T , each
satellite s ∈ S decides: (1) the energy allocation γ ∈ Γ (γ = ∅ means no energy) for executing
in-situ local computation and model aggregation/data transfer; (2) the GS-sat and inter-sat
link usage topology α ∈ A and β ∈ B for executing model and data communication; and
(3) the selected data sample λ ∈ Λ for data sharing across satellites; With ω = {γ, α, β, λ}
indicating these resource allocations, we use binary variables ϕs,ω ∈ {0, 1} to denote their
selection for satellite s. Given the streaming data ds

t ∈ D and model parameters ps
t ∈ P for

satellite s, these allocations require Ct(s, ω, ds
t , ps

t) execution time and yield the model updates
δ(s, ω, ds

t , ps
t) during each scheduling window Tt. As such, we have the aggregated model

updates ∆ =
∑

∀s∈S ϕs,ω • δ(s, ω, ds
t , ps

t) from all participating satellites. Then we update
the global model pt and derive its test accuracy increment of At(pt, ∆). Mathematically,
we formulate a mixed integer linear programming problem (MILP) that maximizes the
convergence rate (the sum of At(pt, ∆) ∀t ∈ T) that respects constraints in energy, storage,
and connectivity:

argmax
ϕs,ω

∑
∀t∈T

At(pt,
∑

∀s∈S,∀γ∈Γ,∀λ∈Λ,
∀α∈A,∀β∈B

ϕs,ω•δ(s, ω, ds
t , ps

t)) (6)

subject to max
∀s∈S

(ϕs,ω • Ct(s, ω, ds
t , ps

t)) < ||Tt|| (7)

||ds
t − ϕs,ω • λ +

∑
∀s∗∈S,s∗̸=s

ϕs∗,ω • λ|| < ||Ms|| (8)

||ϕs,ω • γ|| < ||Es|| (9)

where Eq (7) to (9) ensure that the allocation and scheduling strategy satisfies the contact
window ||Ti||, the onboard storage ||Ms||, and the available energy ||Es|| for any satellite
s ∈ S in every scheduling window.

The above optimization problem is computationally intractable due to its large search
space and the unclear relationship between manipulated data samples and the accumulated
test accuracy of the global model. First, optimizing Eq (6) can be reduced to a multi-
dimensional binary knapsack problem [16] (i.e., an NP-hard problem [79]), which aims to

NINeS 2026

5:32 OrbitalBrain: A Distributed Framework For Training ML Models in Space

pick binary options ϕs,ω to maximize overall accuracy while satisfying these three constraints.
However, it is infeasible to get all resource allocations ω = {γ, λ, α, β} by training the ML
model with all possible satellite energy allocations, link usages, and especially the data
sampled selected for transfer. Second, Eq (6) has the same uncertainty of δ(s, ω, ds

t , ps
t))

with the thief scheduling problem [16], which optimizes the compute resources and training
configurations of ML training for video analytics [25]. Eq (6) is more challenging due to its
large search space not only in compute resources but also in link topology and data transfer
selections. For example, the link topology consists of Planet’s 207 satellites and 12 ground
stations. Each satellite has to assign its energy for computation, transfer, model aggregation,
and also determine which satellite it can transfer its data to.

B Power Modeling

Here we show the energy requirements of certain components of a satellite. These are the
power draws in addition to the solar panel providing 7W while not in the dark side of the
Earth [112, 41]. Numbers are compiled from [45, 114, 112, 49, 41].

State Demand Consume OFF in OFF
Machine Voltage Power shade Order
ADACS 5.0V 1.13W ✓ 3
Camera 5.0V 6W ✓ 3

Downlink TX 6.75V 50W ✗ 2
Uplink RX 6.75V 2.5W ✗ 2
GPU/ISLsb 6.75V 7.5W ✗ 1

bUsed for local computation & communication via ISLs.

O. Chabra, C. Li, K. Hsieh, S. Segarra, B. Arzani, P. Olsen, and R. Chandra 5:33

C Notations used in Section 3.

Notation Description
Sm×1 Set of m satellites, s ∈ S

ηs Model staleness for satellite s

|Ds| Number of data samples for local computation in s

ncomp
s Est. # of computable data samples in s

Loss(d) Training loss of data sample d in s

a Dacay factor for time-varying model staleness.
Sc Set of sats running compute in next window
Sc Subset of Scc communicable from ground
ϵs Est. computational efficiency for sat s

θ0 Init. threshold for deciding MA
b Decay factor for time-varying θ from θ0
ls Data label distribution in sat s

Fdis(ls)) JSD between ls and i.i.d label distribution
ncollect

s Est. # of data samples to be collected by s

nt
ss′ Est. # of data samples transferred from s to s′

ξ Hyper parameter to balance compute and DT
T Set of scheduling windows, t ∈ T
Tt A scheduling window with duration ||Tt||
Ms Storage constraints for s, with size ||Ms||
Es Energy constraints for s, with size ||Es||
Hs Staleness for s, with size ||Es||.

GISL ISL connectivity topology
At(pt, ∆) Test accuracy increment of global model

Table 5 Descriptions for notations used in OrbitalBrain.

NINeS 2026

	1 Introduction
	2 Preliminaries
	2.1 Physical Constraints of Nanosatellites
	2.2 Effects of Physical Constraints on ML Training
	2.2.1 Impact on Ground-Based Training.
	2.2.2 Impact on Space-based Training.
	2.2.3 Image Compression.
	2.2.4 Satellite Predictability.

	2.3 On-orbit labeling and training

	3 OrbitalBrain: System Design
	3.1 Guided Performance Profiler
	3.2 Model Aggregation (MA) across Satellites
	3.3 Enabling Data Transfer (DT)
	3.4 Executor: Putting It All Together

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 End-to-End Performance
	5.3 Component-wise Analysis
	5.4 Robustness and Sensitivity
	5.5 Comparison with the Ideal Cases

	6 Related Work
	7 Conclusion
	A Problem Formulation
	B Power Modeling
	C Notations used in Section 3.

