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—— Abstract

Globalized computing infrastructures offer the convenience and elasticity of globally managed objects
and services, but lack the resilience to distant failures that localized infrastructures such as private
clouds provide. Providing both global management and resilience to distant failures, however,
poses a fundamental problem for configuration services: How to discover a possibly migratory,
strongly-consistent service/object in a globalized infrastructure without dependencies on globalized
state? Limix is the first metadata configuration service that addresses this problem. With Limix,
global strongly-consistent data-plane services and objects are insulated from remote gray failures
by ensuring that the definitive, strongly-consistent metadata for any object is always confined to
the same region as the object itself. Limix guarantees availability bounds: any user can continue
accessing any strongly consistent object that matters to the user located at distance A away, insulated
from failures outside a small multiple of A. We built a Limix metadata service based on the key-value
interface of CockroachDB. Our experiments on Internet-like networks and on AWS, using realistic
trace-driven workloads, show that Limix enables global management and significantly improves
availability over the state-of-the-art.
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1 Introduction

Organizations today face a choice between localized and globalized computing infrastructure,
each alternative carrying important tradeoffs. Localized infrastructure hosted at the organiz-
ation’s own site(s), such as private clouds, carry higher internal management burdens but
offer greater local autonomy, resilience to distant failures beyond the organization’s control,
and can be necessary to satisfy data privacy or digital sovereignty concerns. Globalized
infrastructure such as public clouds, in contrast, offer many global management benefits:
e.g., the convenience of instantiating objects or services on demand without worrying about
their location, maximum elasticity in provisioning and adapting to changes in load, and the
ability to migrate existing data and services without having to interrupt access or change
their names.
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Is it possible to achieve the local autonomy, failure resilience, and digital sovereignty
benefits of localized infrastructure, together with the global management benefits of today’s
public clouds? Achieving the best of both worlds appears fundamentally hard, in part
because this choice boils down to a basic indirection conundrum. For clients to find and
access localized infrastructure such as private cloud services, we can simply embed a locally-
scoped or already resolved location directly into the identifiers of objects and services being
accessed. Accesses by local clients to local objects can be simple, robust, and insulated from
remote failures or network partitions outside the relevant domain, as illustrated in Figure la.
But these objects are then “fixed” and cannot be migrated or managed globally without
changing their names.

Global management, in contrast, requires “another level of indirection”: typically a
distributed coordination or metadata service, allowing clients located anywhere to discover the
location and status of any object or service of interest. These services, however, expose clients
to global gray failures [21] such as network partitions [4, 17, 20], misconfigurations [29, 31],
or cascading failures [27, 6, 4, 20], far beyond of the organization’s geographic locality or
domain of control — i.e., exposure to “the failure of a computer you didn’t even know existed.”
This global failure exposure usually applies even when both the client and the target data or
service are localized to the same network or region and have connectivity in the underlying
network [6, 4]. Even if the target data might be weakly consistent [26, 12, 16], metadata is
usually strongly consistent for many reasons [24, 5] such as correct liveness determination,
access control, and accounting. Dependence on globally geo-replicated metadata, however,
can prevent even local clients from accessing local data if a majority of metadata replicas fail
or become unreachable, as illustrated in Figure 1b.

Cell-based configuration services like Physalia [6] improve failure resilience for users within
the same cell. These provider-managed cells, however, do not offer users direct transparency
into or control over each user’s Lamport exposure [7] — the set of infrastructure components
whose failure could affect the user — discussed in Section 2.1. For example, a write operation
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in a cell followed by a read operation from another cell requires data discovery across cells.
But discovery caches across cells do not limit exposure, analogous to Figure 1b. Thus, while
cell-based configuration services limit the effect of failures to within the cell of the failure,
they offer no guarantees for user activity that crosses cell boundaries.

To address this conundrum we introduce Limix, the first distributed coordination architec-
ture that enables global management while also guaranteeing that localized accesses within
a region of interest are insulated from global failures beyond that region, as illustrated in
Figure 1c. Limix ensures that the definitive, strongly-consistent metadata for any data-plane
object or service is always collocated in the same region as the object itself. Metadata in Limix
thus enjoys a fate-sharing relationship [11] with both the target object and with any local
clients accessing the object from within the same region — such as within an organization’s
own internal network, or within a relevant geopolitical domain such as a country. Metadata
remains strongly-consistent and geo-replicated, but Limix confines the definitive replicas of
an object’s strongly-consistent metadata to the same region as the object itself.

Challenges and Contributions. Limix’s design decisions for practical global man-
ageability and resilience become apparent when we target applications where the locations
from which data-plane items are accessed change dynamically. Data stores and locality
management services with dynamic data access locality already migrate strongly-consistent
data close to users [24, 5]. Limix ensures that users can continue accessing such nearby items
under remote failures even during migration, while preserving strongly-consistent access.

Constraining the placement of strongly-consistent metadata in localities creates the further
efficiency and scalability challenge of enabling any clients outside an object’s current region
to find the object without incurring the costs of either replicating all location information
proactively across all regions, or potentially having to search all regions during any metadata
query. Limix builds on techniques from compact graph summarization theory [32, 33] to limit
the bandwidth and processing costs of these global searches to a small multiple of the baseline
cost of querying a single global metadata service. The metadata-access costs of Limix’s failure
insulation is thus only about 2x in the common case of an object administratively localized
to a single region. Since metadata query costs usually represent only a small fraction of
the total “end-to-end” costs of accessing most data-plane services, a 2x metadata query
cost increase is insignificant overall to most applications, and is much lower than the IV x
metadata cost increase that cell-based architectures with N distributed discovery services
(or the proactive replication of location hints across all N regions) would otherwise incur.
Further, Limix ensures by design that not only availability but also metadata access latencies
observed by local clients are insulated from global outages or slowdowns, and that they
closely reflect the best local communication latencies available on the underlying network.

To evaluate Limix’s applicability and performance, we prototyped a Limix configuration
service for an exposure-limiting key/value store. For metadata/configuration storage, our
prototypes use CockroachDB [24], a widely-used, strongly-consistent distributed data store.
Our experiments running realistic workloads based on metropolitan traffic traces on AWS, and
on a testbed simulating realistic scenarios, show that Limix outperforms Physalia’s availability
during reconfigurations while providing strong availability guarantees. Our experiments
further explore the tradeoffs between Limix’s overheads and availability guarantees: at scale,
the dynamic load overhead is logarithmic in the number of sites and network width.

In summary, the contributions of this paper are:

The design of Limix, the first distributed metadata coordination service that enables
global management while protecting local accesses from distant failures.

An autozoning scheme ensuring by design that a user accessing any data at a distance A
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away is protected from all failures occurring beyond a small multiple of A.
A theoretical analysis of the load per site in a Limix deployment with autozoning.

A prototype implementation of Limix and Physalia on top of CockroachDB with a
comparative evaluation.

2 Background and Motivation

This section gives the necessary background for a strongly-consistent configuration service
like Limix. We first explain that the CAP theorem imposes restrictions on the availability
Limix can achieve, and that Limix does not conflict with the CAP theorem when prioritizing
availability of local accesses. Second, we focus on Limix’s choice to prioritize user-perceived
availability, for the data-plane objects that matter to users. Reducing the Lamport exposure,
which is the user-centric viewpoint of Limix, contrasts to Physalia’s provider-centric viewpoint,
i.e., blast radius. Our discussions with risk-sensitive customers share Limix’s viewpoint.
Finally, we argue that access locality is prevalent in globalized applications, and thus, Limix’s
focus on shielding local user activity leads to a sizeable increase in user-perceived availability.

2.1 Lamport exposure and blast radius

We informally define the Lamport exposure of any given user U as the set of computing
infrastructure — i.e., every “computer U didn’t even know existed” — that “can render U’s
own computer unusable” [7]. Lamport exposure is thus meaningful only with respect to the
activities of some user U.

Limix seeks to place a strong bound or “shield” on the Lamport exposure of any user U
whenever U accesses data or services that are local, i.e., close to U by any suitable distance
metric. We may define locality based on administrative boundaries such as those of an
organization or a country, or via metrics such as round-trip time (RTT). The availability
of U’s local accesses should be unaffected by remote failures and partitions beyond Limix’s
Lamport exposure shield: not just by individual server failures but also by network partitions
and gray failures, or partial failures that can cascade into correlated failures and partial
partitions. Gray failures have a multitude of causes including malfunctioning switches and
software bugs that partially drop traffic or prevent simplex communication [4, 27, 17, 20].
Figure 2a illustrates a Lamport exposure bound shielding a user’s accesses to an object at
distance A from failures beyond a distance €A, for some small factor € > 1 (ideally 1, but
this may be unachievable).
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Locality matters. By limiting Lamport exposure, Limix seeks to offer availability
guarantees to users for the data and services that matter most to them, which are often local. It
is already common for data stores to migrate data close to users to improve performance [24, 5],
even without guaranteeing availability. Privacy and sovereignty considerations often motivate
organizations or governments to require a user’s “data at rest” to remain within the user’s
country, or a region such as the EU — even if these policies cannot currently ensure that this
data will remain accessible despite outages beyond the relevant borders. Similar considerations
motivate many organizations to confine their most-critical data and applications to local
infrastructure such as private clouds, giving up the benefits of global management. In general,
people more willingly trust organizations and services perceived to be more local [28, 13]. We
hope that Limix might enable providers to offer services to more locality- and sovereignty-
conscious users who might currently avoid globally-managed infrastructure entirely.

In contrast to Limix, Physalia [6] is a cell-based architecture that aims for higher
availability by limiting the blast radius of a failure to each cell. Blast radius represents the
system components and objects that could be affected by the propagation of a failure or
partition (Figure 2b). Blast radius is thus a complementary concept focused (or “centered”)
on the location of a failure, rather than on the location of a user potentially affected by it.
From an infrastructure provider’s perspective, reducing blast radius can reduce the number
of users affected by any single failure. Being focused on the locations of failures and heavily
dependent on internal details of the provider’s infrastructure, however, blast radius does not
offer obvious guarantees that appear directly meaningful to users.

2.2 Coordination and the CAP theorem

Strongly-consistent coordination systems (Zookeeper [22], etcd [3]) are an essential building
block for large scale distributed applications. Distributed applications replicate their state
in order to enhance resiliency to failures, and to decrease latency through proximity to
clients. But an unsought side-effect is the need to coordinate these replicas. Hence the
need for coordination services: These provide a basic set of operations — such as liveness
determination, correct identification of the replicas storing a data item, lease holders, access
control, accounting, etc. Because these functions need to be correct, coordination services
implement consensus among the configuration replicas, ensuring strong consistency of the
configuration.

Coordination systems often are not critical to application availability until failures oc-
cur. Applications routinely bypass the coordination system for configuration reads using
leases [8, 24]. During partitions or failures, however, the data plane cannot bypass the
configuration system, because it needs to reconfigure its data replicas. This is when the
configuration system becomes critical to application availability and performance. Reconfig-
uration requires strongly-consistent configuration writes to agree on the new configuration.
Until reconfiguration completes, the data-plane may be partially (e.g., operate in read-only
mode only) or fully unavailable.

The requirements of configuration systems to be strongly consistent and available seem
to conflict with the CAP theorem [15]: under partitions, a strongly-consistent (configuration)
system cannot remain available (on both sides of a partition). However, Limix does not
conflict with the CAP theorem when prioritizing availability of local accesses. Remote users
may not be able to access remote data during partitions, but local users can, without breaking
strong consistency, and in many cases as described above, local data is what interests users.
For this reason, Limix collocates metadata with its data.

To decrease the risk of being affected by remote gray failures, Brooker et al. [6] sug-
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Figure 3 Prevalence of access locality. Top 100 websites in 5 countries and their traffic percentage
from other countries (individual websites and CDF).

gest many smaller configuration service deployments instead of a network-wide “monolith”.
Deploying several configuration services instead of a single globalized deployment is one
of the principles that Limix also applies. However, as opposed to deploying disjoint cells,
Limix creates overlapping, redundant configuration service deployments, organized to provide
availability guarantees for any user accessing any object or service.

2.3 Risk-sensitive customer perceptions

Recent discussions we had with globalized infrastructure customers—a large company and
a non-profit organization, both international—informally confirmed to us their need for
services that are globally-managed while providing availability guarantees in the face of
distant failures. Applications increasingly move to globalized infrastructures such as public
clouds to benefit from the elasticity properties and lower management effort. Despite the
flexibility of including custom clauses in the SLA, some customers are reluctant to trust
these infrastructures: Because the number of reported outages is still uncomfortably high,
they fear the reputation risk. One customer suggested that a good design that guarantees
availability should recommend itself before getting to the SLAs. Finally, customers would
consider leveraging a service that limits Lamport exposure — one referring to this as “the
holy grail” — because its guarantees are well-understood and more meaningful compared to
simply limiting the “blast radius” of a failure.

2.4 Estimating access locality

We observe that many applications and services exhibit bimodal access locality. A high
proportion of accesses are by users mostly in a given country or other region representing
the application’s primary customer base or target audience. Other users of these same
applications and services, however, tend to be globally distributed, accessing the service from
anywhere (e.g., roaming employees or expats). Thus, applications must efficiently support
global accessibility for global users, while prioritizing maximum availability and performance
for local users representing the most critical target customers.

To test this bimodal-access hypothesis, we use the top 100 websites of five OECD countries
(namely United States (US), Switzerland (CH), Spain (ES), Japan (JP) and Australia (AU))
as rough proxies for applications, and examine the access distributions they exhibit. Since
these are the most visited websites in their respective countries, we conjecture that they
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have a strong local presence. In Figure 3, we show that these websites also have a global
presence, as 17-56% (JP—AU) of the websites receive at least 50% of their traffic from outside
of that country. The results of our simple study does not make any assumptions about the
consistency models used by the websites, but it suggests that locally-prevalent applications
are indeed globally relevant too.

3 Setting and Goals

In this section we discuss the main system components, our assumptions and our goals.

Limix involves the following concepts:

Items. Limix is a configuration service for existing data-planes, such as a key-value store

as in our prototype (Section 6). We define as itemns the access targets, e.g., key-value pairs.

Limix manages the configuration of the data plane, which enables lookup and reconfiguration
of data-plane item replicas. Limix interfaces with the existing data store to react to item

creation and migration/reconfiguration by creating and migrating/changing the configuration.

Sites. Sites are the nodes that deploy Limix, which we assume to be connected through
a network. For example, sites can be data centers, which is the use-case we explore in
our prototype and evaluation. Limix can seamlessly make use of sites under the control of
different providers.

Clients requests. Clients interact with Limix by submitting item lookup requests at a
site, and Limix’s availability guarantees apply once the client request reaches a site. Limix
does not improve last mile availability, e.g., if the client cannot reach any site. We make
no assumption about which site clients choose: Clients can submit lookup requests to any
site they wish, e.g., because they change their location, or for other reasons, and the lookup
responses are always correct. However, Limix provides guarantees for the client w.r.t. the
location of the client-chosen site. Therefore, clients choosing nearby sites based on RTTs
would be sensible.

Zones, authoritative zone, definitive replicas. Limix provides availability guarantees
for any client looking up an item at the granularity of zones. Limix deploys zones along
sites, and a zone encompasses “the set of distributed system components, including servers,
routers, network links, etc., that a user depends on for availability” [7] when looking up
items. The data plane is zone-agnostic and does not require zone knowledge. But Limix
tracks data-plane item location w.r.t. zones, in order to collocate configuration with its
data. Specifically, Limix defines an item’s location as the item’s authoritative zone: this is
the smallest zone containing a quorum of the item’s data plane replicas. Limix does not
constrain or change the location of data replicas; it merely tracks them. Then, in the same
zone, Limix maintains the most recent state of the item’s configuration, i.e., the definitive
configuration/metadata replicas for that item. In contrast, non-authoritative zones may have
only eventually-consistent configuration replicas for those items.

Goals. Limix has the following objectives:

Availability guarantees. Provide strong availability guarantees that might be legally

or contractually mandated to hold at all times, even during item migration.

Simultaneous constraints. Satisfy simultaneous sovereignty and locality constraints,

e.g., an Italy constraint is more restrictive in placement, while an EU constraint protects

a larger set of users.

Load balancing. Spread workload for item lookup e.g., avoid overloading small zones

with global accesses. A user imposes load only on the zones the user’s site is in.

3:7
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Dynamic data plane. Enable dynamic data planes to migrate data routinely, without
restricting them with e.g., static partitions of data across regions.

Strong consistency. Enforce that item lookup returns strongly-consistent items, or be
unavailable for that item if the latest item version is not reachable.

Autozoning. Provide an automatic zoning capability, which enforces locality constraints
for all users, the vast majority of whom just “want things to work.” We desire reasonable
but fully-automatic risk-limiting policies requiring no specific understanding of the
workload or administrative effort.

By collocating metadata replicas with the data replicas (i.e., in the authoritative zone),
Limix ensures availability guarantees and strong consistency: Any user who could access the
data can access the strongly-consistent metadata (i.e., definitive replicas) and locate the data.
By replicating the definitive metadata replicas in all zones that contain the authoritative
zone, Limix ensures load balancing and simultaneous availability guarantees at different
localities: clients in any unpartitioned zone containing a quorum of item replicas can locate
and access the item, despite failures outside the zone.

4 Design of Limix

This section outlines Limix’s design in a step-by-step fashion for clarity. We first list Limix’s
challenges, then introduce Limix’s per-zone configuration service, and explain how it limits
maintenance loads on local zones. We then address the problem of satisfying multiple
simultaneous exposure-limiting constraints on one item, ensuring that lookup replies follow
data-plane consistency, and handling item migration.

4.1 Challenges

The goal of local availability under global management, coupled with the requirement of
strong consistency for metadata, imposes key challenges on Limix’s design.

Consistency. Because data and services must still be movable and accessible from
anywhere under normal conditions, Limix must enable clients anywhere to locate a data
item’s current definitive state globally, while insulating local clients from global failures. This
requirement implies replicating location information simultaneously across global and local
deployment zones, which in turn exacerbates consistency challenges (Sections 4.2 and 4.3).

Load balancing. We must ensure that control-plane queries about globally-popular
data do not overload a small, lightly-provisioned zone it may be located in. Limix addresses
this challenge by systematically ensuring that each zone, local or global, serves only clients
querying the service from within the same zone, and can therefore spread the access workload
without risking overload from external queries (Section 4.4).

Simultaneous item constraints. Data plane items may have to satisfy more than one
locality or sovereignty constraint — such as that local clients in Germany be insulated from
failures outside Germany, and that all clients in the EU be insulated from failures outside
the EU. This goal requires that Limix allows state replication across multiple overlapping
zones (Section 4.5).

Item migration. Limix must maintain both strong consistency and local availability
even during object migration: ensuring, for example, that data migrating from Germany to
France remains immune to failures outside the EU even during the transition. To address
this challenge, Limix uses a multi-phase process to migrate the data’s definitive state while
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Figure 4 Strawmen for the Configuration Service (CS) and its management of pointers to items.

maintaining eventually-consistent location hints in larger zones beyond the data’s origin and
destination (Section 4.6).

4.2 Item lookup

For zones to act collectively as a unified system, Limix needs to enable clients to find data
that can be located anywhere, regardless of the client’s zone. However, robust and efficient
item lookup is challenging. Figure 4a illustrates a straightforward but inadequate approach,
relying on a central service to store the configuration for item lookup. This service increases
the client’s exposure beyond the perimeter of the client’s and data’s common zone. The
single zone may also become overloaded with requests from all zones.

Of course, this strawman could be easily made scalable by distributing the configuration
service across many/all zones, using standard techniques such as consistent hashing of
keys. However, consistent hashing still increases a site’s Lamport exposure beyond the zone

boundaries. Consider a client requesting data without having the data location cached.

To resolve the location, the client might need to query configuration service sites in zones
different from the zone holding the requested data. Partitions might prevent the client from
reading the data location, even though they might not isolate the client from reaching the
data itself. The problem with this approach is that data and corresponding metadata are
not collocated in the same zone, and hence lack fate sharing [11].

3:9
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Limix thus needs to ensure that a client in a given zone can always find an item within the
same zone using only resources within that zone. Efficiently collocating data and metadata
in the same zone so that they have the same Lamport exposure represents the first challenge
for Limix, which we address by having a distributed configuration service per zone.

4.3 Configuration service consistency

As a next strawman addressing the item lookup challenge above, we could replicate all
lookup pointers in all zones, as depicted in Figure 4b. However, this strawman introduces a
consistency challenge: Because all zones’ configuration services store pointers to all items,
when an item is deleted or migrated, regardless of the zone where the item resided, all
configuration services in all zones should be updated with the new pointer. If we required
strongly consistent state for all zones’ configuration services, we would increase an item’s
exposure to all zones, which is undesirable.

Limix addresses this exposure challenge as follows. Each zone’s configuration service
stores strongly consistent pointers only for the items inside the zone. If an item’s configuration
changes, only the configuration service in the item’s zone needs to update the item’s definitive
configuration (i.e., location metadata) (see Section 3) immediately, on the critical path. Other
zones’ configuration services may update their metadata lazily with eventual consistency,
outside the critical path of the item reconfiguration.

With this approach, each zone has its own configuration service that stores “location
hints” for where an item was last known to be located. But this strawman invites a second
challenge: How do clients locate items given that configuration services might (temporarily)
store outdated pointers? We distinguish two causes of outdated pointers. The first reason is
item migration, when Limix updates pointers outside the critical path. Could a client be
unable to find an otherwise reachable item when the item migrates? Limix addresses the
challenge by temporarily storing a Permanently moved to marker at the item’s old location.
On encountering this marker, a client follows it to the new location. Limix prevents long
indirection paths by eventually updating all pointers, after which it deletes the marker.
The client stops following pointers when it reaches the item’s authoritative zone; Limix
coordination ensures there is a single authoritative zone per item (Section 4.5).

The second reason for items to be outdated is during partitions. If Limix cannot reach
some zones’ configuration services, pointers will be stale. The main challenge is to ensure
that clients do not return stale items because of stale pointers, which would break strong
consistency. Limix clients rely on authoritative zone indicators, as explained above, to
decide whether the pointers point to the most recent item version. However, there is one
remaining issue when partitions heal and several migrations are in place: Pointer updates
might arrive out-of-order, causing an old update to overwrite a newer one. We use versioning
for pointers to avoid this situation. Every pointer update increases the pointer version and
a pointer update occurs only if the update has a higher version than the existing pointer
(Section 4.6). The update makes use of the compare-and-swap primitive typically offered by
strongly-consistent KV stores.

4.4 Lookup load on (small, local) zones

The above strawman invites the question: What is the load on each zone’s configuration
service? Consider updating the configuration service after an item insertion or migration.
Either the destination zone could push the new item location to all zones, or the client’s zone
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Algorithm 1 Ttem lookup that the client calls at site

1: procedure ITEMLOOKUP(site, key)

2 for zone € GETZONES(site) in parallel do

3 // Recursively follow pointers to authoritative zone
4: while | ISAUTHORITATIVE(zone, key) do

5: zone < READPOINTER(zone, key)

6

return zone

could pull the item location on demand. Both approaches incur O(n) load and communication
overhead per client request for n zones.

Limix instead spreads the lookup loads and limits query burden on small zones by
organizing a default overlapping global zone. In our next strawman illustrated in Figure 4c,
local zones store the location only for their local items and serve lookup requests only
from local sites. In contrast, the global zone serves as the backup reference point, whose
globally-distributed configuration service knows any item’s location. Every zone propagates
location updates to the global zone.

A client queries only its own local configuration service and the global one, without
overloading other small zones. Thus, instead of O(n), the overhead per update becomes
O(1). The global configuration service must service load from all O(n) zones, but it has
server capacity distributed across all O(n) zones among which to share that load. Location
updates propagate only eventually, off the critical path, to limit the source zone’s exposure
to outer failures.

4.5 Item placement and zone overlap

Aside from the global zone, we assumed so far that local zones are disjoint. This assumption
has a significant limitation, however: it cannot support simultaneous exposure-limiting
policies, which may apply by law or contractual obligation. An item located in Germany may
need to be accessible by clients in Germany with Lamport exposure limited to sites within
Germany, and ensure that any client in the EU can access the same item with exposure
limited to the EU. Yet, with the above strawman configuration service, EU clients outside
Germany must query the global configuration service, yielding global (not EU) exposure.
We address this problem by allowing local zones to overlap. All zones have a configuration
service, and every zone propagates location updates to larger overlapping zones, up to the

global zone. The global zone still acts as a master reference, holding pointers to all items.

Update overhead increases slightly compared to the single global zone, from O(1) to O(v),
where v is the maximum overlap depth. However, this approach limits Lamport exposure
to smallest zone containing both the item and the client accessing it. Location updates
propagate only eventually, outside the critical path, to limit the source zone’s exposure to
failures outside its borders. Figure 4d illustrates the final configuration service.

Item lookup revisited. We review item lookup in the final Limix configuration service
architecture. We begin with a simplified scenario where items are immutable, do not change
location, and the lookup service pointers of all zones are up-to-date. In this scenario, we do
not need to worry about pointer or item consistency. Section 4.6 addresses consistency and
migration.

Alg. 1 describes item lookup. A client calls the lookup function on a site’s coordinator,
passing the item key as a parameter. The coordinator sends parallel lookup queries to the
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configuration services of all site’s zones. The client follows the pointers in the responses until
it finds the authoritative zone, or returns nil.

Why does item search not degrade the exposure guarantees? Each of the parallel lookup
queries accesses the zone-private KV store, having dependencies only inside the zone. Other
parallel searches might hang in case of partitions or slow performance. However, because
each search executes and completes independently, parallel searches do not affect each other.
Of these zones, the ones that reply first with a pointer chain leading to the authoritative zone
determine the client’s exposure for that item. If at least one such set of zones is partition-free,
the client is guaranteed to find the item. Thus, the coordinator bounds a client’s exposure to
the smallest zone of the client that contains the item.

4.6 Lookup during item migration

The placement of items may need to change, for example due to client-perceived performance
and load-balancing algorithms. Or this could be caused by a policy change, e.g., a new
constraint on which existing zone(s) a particular item is allowed to be placed in or migrated
to. Because items involve strongly-consistent state, a challenge is that Limix must maintain
strong consistency for configuration during item’s migration. Three questions arise at this
point: (a) How can we ensure that the coordinator locates the latest version of an item,
even during migration or partitions? (b) Given that clients could update data plane items
anywhere in the system, how do we ensure another distant client, located in a different zone,
finds a specific item? (c) How do we ensure item search does not degrade the exposure-limiting
guarantees?

Alg. 2 depicts item migration from the item’s authoritative zone sZone to the new
authoritative zone dZone. When Limix receives a callback from the data store that an item
is being migrated, it does the following: (0) Increment the item’s most recent pointer version,
by definition in the item’s authoritative zone sZone (lines 2-3). We use pointer compare-
and-swap with versioning for the pointer updates below to avoid old pointers overwriting
newer ones. (1) Update the pointer in the old zone with a forwarding reference, indicating
the item is being migrated to the new zone and the old zone should no longer be considered
authoritative (line 4); (2) After item migration, update the pointer in the new zone indicating
migration is complete and the new zone is now authoritative, meaning that item is now
usable at its new site (line 5); (3) In parallel and outside the critical item lookup path, update
discovery service information in all zones for the item’s old and new location (lines 6-8); (4)
Garbage collection: The item’s configuration may finally be deleted in the old zone (line 10).

The algorithm above guarantees that any client can locate any item as long as they
share an unpartitioned zone, even during/after migration. After step 1, all clients following
existing pointers for that item (using Alg. 1) that lead (directly or indirectly) to the former
authoritative zone learn that the item is being migrated to the new zone. After step 2, when
the item finishes migrating, all clients following existing pointers locate the new authoritative
zone. All clients can now find the item, but possibly via a longer chain (e.g., if it moved
from the UK to Italy, Spain clients may first follow the pointer to the UK, then to Italy).
Lookup exposure during migration reflects the migration: The client’s exposure for accessing
the item is Zgpain U Zuk U Z1ia1y. Eventually, when all pointers in step 3 finish updating,
all clients in the system can locate the item by following a single pointer. Accordingly, the
exposure after migration is Zspain U Z1ialy = ZSW—Europe- 1mportantly, because pointer
updates happen independently and in parallel, partitions outside Europe SW cannot disrupt
the client from locating the item.

It is worth outlining the tradeoff between limiting exposure and the overhead of updating
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Algorithm 2 Location update during item migration

1: procedure UPDATEPTRONMIGRATION (key, srcZ, dstZ)

2: oldPtrVersion < READPOINTER(srcZ, key).Version

3 ptrVersion < oldPtrVersion + 1

4: CAS(srcZ, key,v = dstZ||ptrVersion, ptrVersion > crt)
5: CAS(dstZ, key,v = True, ptrVersion > crt)

6 do in parallel

7 UPDATEPTROUTERZ(srcZ, key, False, ptrVersion, >)
8 UPDATEPTROUTERZ(dstZ, key, dstZ, ptrV ersion, >)
// Background garbage collection after updating all ptrs

10: CAS(srcZ, key,v = nil, ptrVersion > crt)

11: procedure UPDATEPTROUTERZ(zone, key, val, version, cmp)
12: for outer Zone € GETOUTERZONES(zone) in parallel do
13: CAS(outer Zone, key, val, cmp(version, crt))

metadata during item migrations. In Limix, simultaneous migrations for the same item
require updating the metadata pointers in all zones that contain the item before and after
each migration step. The update overhead enables Limix to limit exposure of the item
lookup during migration to the smallest unpartitioned zone containing the still in-flight
migrations. In contrast, an architecture that maintains local configuration services per zone
and additionally a global configuration, like in the strawman in Figure 4c, merely needs to
update global zone pointers (akin to cache invalidation) and pointers of the migration zones.
This reduces pointer-update overhead at the cost of global exposure during migrations.

5 Control Plane Zoning

Limix provides user-centric availability guarantees meaningful for users with respect to items
they access. Limix can define zones as input jurisdictions, e.g., Germany, the EU, the World,
which are useful when items are constrained by regulatory bounds, for example. However,
sometimes administrative zoning policies may not be explicit. Or users may want formal
guarantees on availability, alongside administrative policies.

This section presents one particular autozoning policy that limits Lamport exposure,
and that can use any distance metric, such as network latency in our design. For any user
accessing any item, autozoning limits the access’s exposure — availability and performance —
to a zone guaranteed to exist within a small RTT from the client and the item.

RTT as exposure metric. For creating auto-zones, Limix uses round-trip time (RTT)
as the exposure metric. A zone’s RTT diameter defines the zone’s exposure: a lower RTT
diameter gives a lower exposure to remote failures, thus higher availability. The intuition
is that clients and items with a small pairwise RTT are likely geographically close [9],
representing localized accesses for Limix. As RTTs increase, localities are less tight. RTT
maps of sites deployed on cloud providers are stable, showing less than 6% month-to-month
difference in median latency on Azure [18, 34]. During bootstrapping, Limix builds an
inter-site RTT map: the sites measure their pair-wise RTTs, and then each pair of sites
averages their link’s RT'T value so that the final RTT map is consistent across sites. Based
on the RTT map, each site computes the auto-zones membership and Limix starts operating
without any assumptions about the timing or location of partitions.

Autozoning strawman. To bound the exposure of a particular client to any item, we
could simply build overlapping zones centered on the site that the particular client accesses.
A naive, non-scalable approach would be to build many concentric zones of slowly increasing
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_item D Exposure2

Figure 5 Left: Autozoning strawman, bounding exposure for a single client accessing any item.
Right: Limix autozoning, bounding exposure for any client accessing any item.

radius. A more scalable aproach is to choose exponentially increasing zone radiuses, as
depicted in Figure 5-Left. The tradeoff of exponential zone radii is less tight Lamport
exposure bounds for the client accessing any item, at the scale benefit of building a number
of zones logarithmic in network-wide RTT.

This simple strawman, however, only bounds exposure for clients accessing the system
through sites located at the center of zones. If a client chooses a site with non-concentric
zones (in line with Limix’s goals of supporting dynamic access) then the client loses the
tight exposure guarantee. Whereas, if the system simply deploys such zones centered around
each site, then each site serves load from a prohibitive O(N log N) zones, where N is the
number of sites. We show next how to scalably build zones that bounds exposure for any
client accessing any item through any site.

Compact-graph approximations. Autozoning builds on techniques from compact
graph summarization theory [32, 33] to guarantee exposure for all clients and all objects, while
optimizing the number of created zones, hence optimizing the system overhead. Autozoning
has two goals: (1) Bounding the exposure of any user accessing any item; (2) Scaling to large
deployments by incurring a logarithmic load on sites.

For the first goal, recall that the exposure of a client locating an item is given by the
smallest zone containing both the client and the item. Our insight is to use compact graph
techniques to formally guarantee an upper bound on the zone RTT diameter, hence bounding
the client’s exposure. Specifically, we want to ensure there exists a configuration service “close
enough” to any client that has pointers to any item. Compact graph techniques approximate
the distance between any two sites — in our case, between a client’s site and an item — to at
most (2 x k—1) x uv, where @ is the sites’ RTT and k is a parameter affecting exposure and
load. Autozoning places sites into a zone if they lie within the approximate distance between
a client’s site and the item. Intuitively, building such zones for all user-item pairs ensures
that any user u looking up any item ¢ is guaranteed to find a “small enough” common zone
of diameter at most (2 x k — 1) x RTT (u,1).

The second goal of autozoning is to scale to large deployments. Limix relies on two
techniques for scaling. First, from compact graph approximations theory, each site only needs
to know about O(log V) other sites, where N is the total number of sites in order to guarantee
the exposure limits above. Even so, if we built all zones as described above — and imposed
the zone deployment load on the member sites — the cost becomes prohibitive because of the
large constants in ¢ x O(log N). Instead, we use exponentially increasing zone radii, as in
the strawman. As a result, each site participates in and runs a logarithmic number of zones.
Figure 5-Right depicts the autozoning design, omitting the global zone for simplicity. Locality
bounds become i x 2¢, where i is the smallest zone such that i * 2 > (2 x k — 1) x RTT(u,v).
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Algorithm 3 Autozoning at site u

1: procedure BUILDAUTOZONES(u, Sites, nLevels, RT'T)

2: for v € Sites do

3: v.Witnesses < CompWitnesses(Sites,nLevels, RTT)
4 if RTT[u][v] < v.Witnesses[u.Level + 1] then

5: u.Cluster < u.Cluster Uv

6: for v € u.Cluster do

7 for radius in i x 2° do

8 if RTT[u][v] < radius then

9 u.Zones[radius| < u.Zones[radius) Uv

0
1

for zone € u.Zones do
StartCon figurationService(zone)

5.1 Autozoning algorithm

Zone construction. Alg. 3 depicts the zone construction. Compact-graph approximations
use the sites as landmarks for approximating distances. Higher-level sites act as global

landmarks to approximate large distances, whereas lower level sites act as local landmarks.

Each site obtains level 7 with probability N~%* (k represents the number of levels). Intuitively,
a lower k offers tighter bounds on distance approximation, which for Limix means lower
exposure, at the cost of higher load on sites. To approximate distances, each sites maintains
a set of sites as contact points, called its bunch. A site u explores sites in ascending distance
from itself, and adds a site v in its bunch if v’s level [, is no smaller than that of any sites
explored so far (including u). The sites v closest to u at every level form u’s witnesses (line
3). The inverse concept of a bunch is a cluster. v’s cluster is the set of sites around v, which
are “close enough” to know about v as a landmark (lines 4-5). Every site is a landmark and
builds zones along its cluster, using exponentially increasing RTT diameters (lines 6-11).

Lamport exposure bounds. From the cluster construction, a site at level k — 1 has
all sites in its cluster and, thus, creates a Global zone. Because site w builds zones on its
cluster, and u and v are in its cluster (in other words, v and v have w in their recursive
bunch), u and v are guaranteed to be in a zone of diameter at most D = i * 2¢, where i is
the smallest such that i *2° > (2 x k — 1) x RTT(u,v). By construction, any two sites u and
v — alternatively, a user contacting site u to look up an item stored on v — are guaranteed to
find such a zone, providing guaranteed bounds on the Lamport exposure.

Load. The size of a site’s bunch is a key property determining the number of zones that
a site is a member of. From the probability distribution of level assignment, we expect to
accept approximately B = ﬁ sites into u’s bunch at each level i. Thus, each site’s bunch
has, with high probability, size |Bunch,|~ B x k = B X logg(NN), which upper bounds the
number of zones u participates in. Factoring in the exponential zone diameter increase, u
participates on expectation in a polylogarithmic number of zones, or O(log V).

5.2 Scalability analysis

We study the system’s scalability when the number of sites increases. We ask two questions:
(1) How many zones / configuration services should a site expect to run?; and (2) How much
load should a site expect when running x zones?

Figure 6 answers the first question, depicting a CDF of the expected number of zones
per site. We analyzed different N and k parameters for a fixed network diameter D. The
fixed overhead increases linearly per additional zone the site runs. But the dynamic load
that each site serves depends on how many other sites are running the same zone, because
only participating sites direct user requests to that zone.

3:15

NINeS 2026



3:16 Limix: Limiting Lamport Exposure to Distant Failures in Global Distributed Systems

wh— o - - k-
o
0.8
w0
(]
e)
[e]
Z 0.6
z
o
S 0.4l K=3, N=45
So.
g K=3, N=150
s K=4, N=45
0.2 K=4, N=150
K=5, N=45
0.0 - K=5, N=150
10 20 30 40 50

Number of zones

Figure 6 Theoretical analysis: CDF of the number of zones per site.
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Figure 7 Theoretical analysis: expected load per site if each site initiates 100 requests.

Figure 7 depicts the expected dynamic load per site compared to the expected total
number of zones in Limix. We consider a network diameter D of 128 ms and each site issues
100 requests. For a set of N, k and D, the expected number of zones is uniquely determined.
The experiment varies N and plots the expected load per site for systems with parameter
k =2 to k = 5. The analysis shows that, with bigger networks and more zones, the cost for
each site grows with a slow logarithmic rate, which flattens for bigger k. We refer interested
readers to the appendix for the detailed computation of the expected number of zones that a
site is part of, which we used for computing the expected load per site. We conclude that
Limix scales well on large wide-area systems.

6 Implementation

We implemented a Limix prototype of a configuration service backed by an existing data store.
Limix stores its configuration in a per-zone strongly-consistent KV store: CockroachDB [24],
a widely-used strongly-consistent data store. Although CockroachDB has rich functionality,
Limix only uses its basic KV store API read and compare-and-swap. A Limix coordinator
runs on every site, providing an APT to look up items with strong consistency guarantees.
Our implementation is written in Go, with bash scripts for test infrastructure.
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Figure 8 CDF of reconfiguration RTTs.

Startup. Each site in Limix runs a startup script, which takes an input a list of
participating sites and either jurisdictions or autozoning with the number of levels. In the
case of jurisdictions, the zone membership is given. For autozoning, each script measures its
RTT to all other sites, and runs autozoning locally with the same parameters to learn the
zone membership. The sites in each zone start a CockroachDB instance.

Processing lookup requests. Each site runs a Limix coordinator that provides a
client APT itemLookup(key) : (zone,version), where version indicates the latest, strongly-
consistent item pointer. Each site’s coordinator queries (Algorithm 1) the configuration
stores running on that site, i.e., CockroachDB deployments of the site’s zones, through local
Go pq queries [1] (a PostgreSQL-compatible driver). Each Limix coordinator running on
a site part of zone Z receives callbacks from the external data-plane store (CockroachDB
deployment in our prototype) upon item creation, update, deletion or migration in the zone,
which each coordinator uses to updates pointers and authoritative zone information (Alg. 2).

7 Evaluation

We evaluated Limix’s resilience to network partitions and overheads. Our first experimental
setup considers jurisdictions, and evaluates Limix’s overhead. Our second experimental setup
focuses on Limix autozoning and its resilience, and compares Limix with Physalia.

Testbeds. We used two testbeds for our experiments, both orchestrated using Kubernetes.
The cluster testbed runs 40 Kubernetes sites in a local cluster with a simulated network,
which allows for more expeerimental flexibility. Each site requests 15GiB memory and one
hyperthread of an Intel Xeon Gold 6240 CPU @ 2.60GHz. The delays between sites represent
real-world delays of a globally distributed topology, as follows. Using CAIDA’s Archipelago
(Ark) Measurement Infrastructure [9], we selected 40 random monitors as site locations from
the 90 available (Africa 8, Asia 13, Europe 26, North America 31, Oceania 4, South America
8). To compute the RTT between two sites at geographical distance d, we averaged the two
monitors’ median RTT for that distance as reported by CAIDA. Our RTT range is 0 to
602.25 ms.

The real-world testbed is deployed on Amazon Web Services (AWS) and spans 20 sites
(US: East 4, West 4; Canada: central 2, Asia-Pacific: SouthEast 2, NorthEast 3, EU: Central
1, West 2, South 2). The server at each site has 16 GiB of DDR4 SDRAM, up to 10 Gbps
bandwidth and 2vCPU on 3.1 GHz Intel Xeon processors. RTTs between sites range from
0.43 to 250.31 ms.

Software setup. Limix autozoning experiments use two levels for building zones through
compact graph approximations, and zone diameters of 2(: — 2)\/51, where ¢ > 3. For the

3:17

NINeS 2026



3:18

Limix: Limiting Lamport Exposure to Distant Failures in Global Distributed Systems

Feature CockroachDB Limix
Geo-replication Private cloud

Availability Z; reconfig. 0% 100% 100%

Global configuration mgmt. v X v

Table 1 Jurisdictions: features, measured availability.

Physalia implementation, we use cells of up to 50 ms diameter, i.e., the 99th percentile write
latency reported by the authors. Limix zones and Physalia cells run Core CockroachDB
ver.20.1.

Workloads. We evaluate Limix using configuration writes (W), because they are the
critical operations during gray failures (Section 2). Specifically, we use pairs of write (W-W)
operations between pairs of sites. Each W-W pair concerns the same item. The operation pair
emulates a reconfiguration for that item, e.g., after an item migration. The reconfiguration
write issued by the second site has a strong consistency dependency on the first. The term
“reconfiguration RTT” is the RTT between the two writers. The goal is to evaluate the
exposure of the reconfiguration, given a known prior location of the configuration. In our
experiments, we run the workload as Poisson arrivals, at a rate of 20 pairs per second.

We use real-world distributions for the reconfiguration RTTs based on metropolitan traffic
traces. We chose metropolitan traffic traces as they capture more local traffic, as opposed to
backbone links that might miss local traffic. Chen et al. [10] provide an RTT distribution
over a 10Gbps metropolitan link — henceforth called trace 1. We compared this trace to
four traces of the Waikato dataset [2], whose RTT distribution we extracted using a similar
methodology as [10]: we matched data packets with the respective ACKs. These traces rely
on public datasets and the extraction methodology avoids raising ethical issues. Figure 8
shows the cumulative distribution function (CDF) for the reconfiguration RTT. Given the
similarity of the distributions, and the fact that trace 1 is more recent, we used trace 1 for
generating the reconfiguration RTTs.

7.1 Jurisdictions: availability and costs

Our first experiment focuses on a simple Limix deployment in which each item exists in only
one local zone, in addition to the default global zone. In this scenario we consider each of the
disjoint local zones to represent an administratively-defined jurisdiction, such as a country.
The experiment answers the question: “What are the availability benefits and cost per Limizx
zone in this scenario?”

Methodology. We ran the experiment on the cluster testbed. We focus on one particular
jurisdiction centered around a CAIDA monitor in Europe West, and choose an RTT radius
of 50 ms around the center, which roughly corresponds to the EU-West jurisdiction. Prior
work has also shown that latencies of roughly 30 ms correspond to country-wide RTTs in
Europe [10].

We are interested in the overheads during no-partition conditions, and in the availability
during partitions. For this experiment, we run a synthetic workload with 2000 pairs of
W-W operations: 1000 W-W pairs are for reconfiguration in EU-West, and 1000 for global
reconfiguration. For the availability experiment, we run the same operations, but we
disconnect EU-West from Global. We denote EU-West by Z; and Global \ EU-West by Z;.
In Limix, sites in Z; are part of two zones, whereas sites in Z; are part of one zone.

Availability. We compare Limix against two baselines: core CockroachDB with geo-
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Figure 9 Jurisdictions: compute, memory, and bandwidth overhead.

replication in the Global zone — henceforth called Geo, and core CockroachDB deployed as a
private cloud in EU-West only — henceforth called PCloud. Table 1 summarizes the features
of the three designs. Geo offers global configuration management, but reconfiguration in Z;
fails under partitions. The reason is that, under partition, Z; cannot reach a majority of
configuration replicas. PCloud succeeds reconfigurations in Z; under partition, but offers
no global configuration management, because all configuration is in Z;. The experiment
confirms that Limix offers both availability in Z; and global configuration management.

Overheads. For the same workload, we report the memory, CPU and bandwidth
overheads under no-partition conditions. Figure 9 shows these overheads for sites in 73
and Z;. As expected, PCloud sites have the lowest overheads, but PCloud lacks global
manageability. PCloud sites Z; simply forward client requests to the closest site in Z;, hence
use almost no resources. The sites in Z; running PCloud have lower overheads than Geo
sites because the PCloud deployment is smaller, and requires fewer resources for coordination
between sites, for example. For its improved resilience guarantees, Limix sites in Z; spend
about 2x the memory, CPU and bandwidth compared to Geo. The memory overhead stems
from sites in Z; running two instances of CockroachDB: one corresponding to the inner- and
the other to the outer-jurisdiction. To explain the CPU and bandwidth overheads, recall that,
when a Limix site in Z; executes a write, it also writes to Z;. However, Limix sites in Z;,
which do not have an improved resilience guarantee compared to Geo, have overheads very
similar to Geo. We conclude that Limix is suitable for a highly configurable pay-as-you-go
deployment, where extra resources spent increase availability.
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7.2 Autozoning availability guarantees

This experiment evaluates to what extent the configuration of localized data is exposed to
remote gray failures. This time, however, no jurisdictions are given: we use autozoning and
test Limix’s availability guarantees in comparison to Physalia. We ask the question: “If a
random site runs a reconfiguration for a random item, to what extend could remote failures
cause the reconfiguration to fail?”

Methodology. We generate pairs of writer clients; each pair performs a configuration
write at a site chosen uniformly at random. The pairs are chosen as follows. We select 30
random sites, and in a random radius around each site of up to 150 ms chosen uniformly
at random, we generate 1000 interacting pairs. We disconnect the network at a distance
Ri12=2zxRy,z ={1,2,3,4,5}, and run each experiment separately. We then depict the
result of the interaction (success or fail) relative to the RT'T between the interacting sites
and the distance to the failure. Each pair writes a different key from the other pairs to avoid
dependencies across pairs, hence the reconfiguration RTTs (i.e., of the interacting sites) are
distributed uniformly at random.

We are interested in what dependencies the second writer might have on other sites, and
how far in network distance these sites are: Dependencies on other sites could cause the
second writer’s configuration write to fail, e.g., by triggering a correlated failure. For this
purpose, we select an area of a random radius R around the second writer, and we partition
the network along the zone’s border. The two writers are never partitioned from each other,
because by design the second writer has a strong consistency dependency on the first, and
then the second write would fail. By running this experiment, we test whether the second
writer has dependencies outside the partitioned area.

Figures 10a and 10b depict the success or failure result for each writer-writer pair. The
x-axis represents the reconfiguration RTT, and the y-axis represents the network distance to
the partitions. Thanks to Limix’s exposure guarantees, reconfigurations in Limix succeed
more frequently than in Physalia. Both systems register failures below Limix’s shield (black
solid line), showing that they do have dependencies nearby. However, Physalia interactions
also fail even when failures are above Limix’s shield, i.e., relatively far from the sites. This is
because Physalia does not provide availability guarantees for pairs interacting across cells:
Even if two sites are relatively far from failures, if they are in different cells, their interaction
depends on the infrastructure of both cells. If these cells are partitioned, their interaction
might and does fail. Because these cells are non-overlapping, their combined scope and
exposure can be significantly larger than the distance between the sites — subjecting the sites
to a wider radius of failures. This is unfortunate, given that reconfigurations in Physalia are
frequent. In contrast, Limix autozoning provides a clear availability guarantee, applicable to
all interacting pairs: When failures are farther than the Lamport exposure bound of the two
writers, reconfiguration is guaranteed to succeed.

7.3 Availability under real scenarios

This experiment, like the previous one, tests to what extent the configuration of localized data
is exposed to remote gray failures, but on a real network and using realistic trace-based data.
Because the AWS testbed has lower RTTs that are more clustered, Physalia cells are mostly
between 10-30ms RTT diameter, with a single cell up to 50 ms. Our methodology is similar
to the experiment above, with the only exception that the workload of 1000 reconfiguration
pairs of each experiment has a distribution of reconfiguration RTTs matching the one in
trace 1 (Section 7). The workload is global, thus some interacting pairs cross the partition
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Figure 10 Comparison of availability of Limix and Physalia for different failure scenarios and
testbeds.

boundary.

Figures 10c and 10d plot the results only for the non-partitioned interactions. Our results
generally mirror the ones we obtained on the cluster testbed, with Limix outperforming
Physalia in almost all tested cases, and for the same reasons. There are, however, two notable
differences from the previous experiment. First, Limix registers a few failures close to but
above the shield. These failures correspond to some sites with a more unstable RTT than
the others, whereas we depict the RTT measured at bootstrap time. However, the difference
in RTT was minor, and for all the other sites we observed no violation. Second, we observe a
more pronounced clustering effect of the plotted points, matching roughly our more clustered
topology.

We also summarized the results for each tested workload as percentage of successes of the
maximum possible availability for the non-partitioned pairs. Figure 11 shows that Limix’s
success rate is close to 100% in most cases, and significantly outperforms Physalia. We
conclude that Limix provides strong guarantees on a variety of testbeds and workloads.

8 Related Work

CAP tradeoffs. Faced with partitions, some systems choose to relax consistency in favor
of availability. Gemini [26] distinguishes access types that require a strongly- or eventually-
consistent reply; this technique is known as segmentation [14]. Dynamo, a highly-available
data store, takes a similar approach [12]. Seredinschi et al. [16] provide the user with several
replies, increasing in consistency guarantees, enabling the client to perform speculative
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Figure 11 Comparison of Limix to Physalia on AWS and realistic workloads.

work. Local-first software [23] enables local access despite inaccessible service components by
treating local data copies as primary and leaving inconsistency resolution to the application
— fundamentally handling only weakly-consistent use cases. In contrast, Limix provides a
coordination service ensuring that all accesses are strongly consistent.

Availability during failures. Several strongly-consistent systems employ replication to
survive failures and partitions, however, they assume uncorrelated failures across sites [36,
25, 34, 30, 35]. Failures across geographical locations might not be independent, for several
reasons: machines across sites run the same software and are vulnerable to the same
bugs [17, 6]; sites’ hard disks fill up at the same rate [6]; short-lived and, less frequently,
long-lived (partial) partitions separate sites from each other, causing a domino of failures
and ultimately unavailability [4]. Unlike the availability metric that Hauer et al. [19] recently
proposed, which reactively analyzes failures after they occur, Limix proactively limits exposure
in the first place. Glacier [17] employs massive replication of data, which Limix also does, to
minimize the probability of data loss during large-scale correlated failures. As opposed to
Limix, however, Glacier considers only data stores with immutable objects.

Difference with prior workshop paper. A preliminary version of our system,
introducing Lamport exposure and describing the basic architecture, appeared in HotNets
2021 [7]. This paper significantly extends that work by scoping the definition of Lamport
exposure to strongly-consistent coordination services for key/value stores in a multi-data-
center deployment, builds the complete system and evaluates it against related work.

9 Discussion

Limitations. Limix implements the metadata service. While this is an important com-
ponent, it does not by itself limit the Lamport exposure of the full service stack. We leave
such dependencies for future work, such as upper-layer dependencies (e.g., on Javascript),
power grid and network links whose failure could violate exposure-limiting policies (e.g., if
communication between two sites in Germany crosses network links outside of Germany).
This limitation could in principle be addresssed via deep structural dependency analysis [37],
but it is outside the scope of this paper.
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10 Conclusion

Can we achieve both the elasticity of globalized computing infrastructures and the resilience
to distant failures of localized infrastructure? We show that this is possible by limiting
the Lamport exposure. Limix is a configuration service that provides strong guarantees for
a user’s worst-case availability and performance in the presence of failures and partitions.
Limix satisfies simultaneous bounds for any user accessing any item. Limix designs a control
plane that limits exposure by running a separate lookup service per zone so that, if some
zones become partitioned and unavailable, other ones can respond instead. Limix’s control
plane supports administrative zones and existing strongly consistent data planes with item
migration. But, it also defines an efficient and scalable autozoning algorithm with tight
exposure bounds, guaranteeing that any user can access any data at distance A away, when
failures occur beyond a small O(log N) multiple of A. These techniques together enable
Limix to achieve up to 50% better availability over the state-of-the-art, at a logarithmic
overhead.
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Figure 12 Expected number of zones per site vs number of sites in Limix’s autozoning.

A Appendix: Theoretical Analysis of Autozoning Algorithm Scalability

In this section, we compute the expected number of zones that a site is a part of. Let N
be the set of all sites and n is the number of sites in the system. The system has k levels,
where sites are promoted from level 7 to 7 + 1 with probability 1/3, giving k = logg(n). Let
L 4 denote the level of site A, and let [, be the maximum level. Define iy, and ,ax such
that 2min = R, i, and 2'mex = R (the network diameter). Note that VA € N : A has a
coordinate (z.4,y4) and 2% + y4 < (£222)2. The circle with center site A and radius 2° is
defined as C(A4,1) = {(x,y) | (x —z4)? + (y —ya)? < 2%}

To find the number of zones that a site A (A € N) is a part of, we denote zones made
by B (B € N, B # A) that A is a part of that zone by A <— B and zones made by A by
A+ A. Also, We denote all the zones that A is a part of by A + * .

E[#of A« x|=FE[# of A< Al+ (n—1)E[# of A+ B (1)

To find the expected number of zones formed by A we have:

lmax

El#of A« A=Y P(La=0E[#of A+ A|Ls=]] (2)
=0

Based on how levels are assigned with parameter 3, the probability that level of A is [ is:

(%_517{{-1)7 0§l<lmaz

P(La=1)=Pr(l) =
my l= l'ma:L'
We denote the biggest zone of A by zone?: . To compute Eq. (2), for I < l,,q, We have:

El#of A« A|La=1l= > P(C(Ai)is zonepmas | La =1)(i = imin +1) (3)

In Eq. (3), (4 — 4min + 1) is the number of zones that A forms when C(A,7) is the biggest

zone of A. We use an over- and an under-approximation to bound the value of Eq. (3).
Node A forms its zones based on the sites in its cluster. When another site B is in A’s

cluster, A is in B’s bunch. It means that A is closer to B than any other system site with

level > L 4. Figure 12 shows for over-approximation, the biggest possible radius of A’s zone

is equal to the distance between A and closest site to A with a level higher than A’s level.

For over-approximation we suggest Eq. (4). Note that (1 — (52— )2) is the probability

2imazx

that a site, for example A’ € N, is not in C(A, ) and ﬁ is the number of sites with level
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higher than [. We define:

21’

Qimax

9l _n

F) = (1= (5—)2) T — (1 — (—)?) 75

So for over-approximation and for | < l,,,, We have:

P(C(A,i) is zonefmas | La=1) < P(AA € N:La< Ly, A ¢ C(A, 1))

oi . 9i+1 . .
= (1= ()P = (1= ()T = 1) (4)
For the sites with the highest level, the biggest zone has radius R4, S0 the number of
zones that they make is (iyqw — imin + 1). Using it and replacing Eq. (4) in Eq. (2) we get:

Qimaz

lmaz—1 imaz—1
E[# of A+ Al < Prlma:)(imaz — imin + 1)+ Y Pr(l) > f@)(i = imin + 1) (5)
=0 1=tmin
Figure 12 for under-approximation suggests that the biggest possible radius of A’s zone is
equal to half of the distance between A and closest site to A with a level higher than the
level of A, so under-approximating of Eq. (3) we suggest that:

P(C(A, i) is zonemay | La=1) > P(BA € N:La<La,A ¢C(Ai+1))

21, _n 242 _n_
= (= (o )P (1 (2 )T = (i) (©)
Replacing Eq. (6) inEq. (2) we get:
lmaz—1 imaz—2
E[# Of A+ A] > Pr(lmax)(ima:c — Umin — 1) + Z PT(Z) Z f(Z + 1)(7’ — imin + 1) (7)
1=0 i=imin

To find the expected number of zones formed by B that A is a part of, note that A can be
in one of zones made by B only if L4 is not higher than Lp.

lmax lmax
El#of A« Bl=Y P(Lp=10)Y P(La=1)xE[#of A« B|Lp=1,La=10
=0 ’=0

lmax

l
P(Lp=0)Y P(La=U)xE[#of A« B|Lg=1La=1]

=0 ’=0

I
3
g

P(Lg =)P(La <DE[#of A« B|=1, La <] (8)
1=0

In Eq. (8) for I < L4z, notice that when L‘A > Lp, A can not be included in B’s zones, so

the sum over " is < [. We define S(i) = (572 )2. The ring-shaped area between the 2 circles

2imaz

with the center of site B and radiuses of 2/ and 2/*1! is denoted by D(B, j). The probability
that a site A # B, is in D(B,j) is S(j +1) — S(j) which we denote by ®(5) = S(5+1)—S(j).

—~

El#of A« B|Lg=1,La<i= Y P(AcD(B,j) Y P(C(B,i)=zonen)(i-j)
J=tmin—1 i=j+1
= S(imin) Y P(C(B,i) = zoneq)(i = imin + 1)
tmaz—1 / imax—1
+ Y P(A€D(B,j) Y P(C(B,i)=zonep)(i—j)
F=tmin i=j+1
7;*VYL(L(L‘ iT‘VL(lI_l lmam_l
= S(imin) Y P(C(B,i) = zonep)(i —imm + 1)+ > ®(G) Y P(C(B,i) = zonep)(i — j)
P =lmin I=imin i=j+1

3:27

NINeS 2026



3:28 Limix: Limiting Lamport Exposure to Distant Failures in Global Distributed Systems

)
In Eq. (9), (i—4) is the number of zones formed by B that A is a part of if A is within distance
of 27 and 29+! of site B when C(B, 1) is the biggest zone formed by B. For Lp = ;4. all
the sites, including A, are in B’s cluster and B’s biggest zone has radius R4z, SO:
imaz—1
E[# Of A+ B | Lp = lmam] = S(Zmln)(lmax — imin + 1) + Z (D(j)(Zmex _.]) (10)
J=tmin

Replacing Eq. (4) and Eq. (10) in Eq. (9) and replacing the result in Eq. (8), we get:

'L.lea(E71
E[# Of A < B] < Pr(lmaz)[s(lmzn)(lmaz - 7:'m,in + 1) + Z q)(])(lmaz - .7)]
J=tmin
lmaz—1 imaz—1 imaz—1 Zma'r71
+ Z PT(l) 1 W ’Lmuz Z f Z_imin+1) Z Z f Z_]
=0 1=lmin J=imin i=j+1
(11)
Replacing Eq. (6) and Eq. (10) in Eq. (9) and replacing the result in Eq. (8), we get:
imaz—1
E[# Of A+ B} > Pr(lmaz)[s(zmzn)(zmaz - Z'mm + 1) + Z (I)(])(Zmaz - ])]
J=lmin
lma1_1 Z’VYLG/I‘ 2 'Lm,am_l i’nL(lT_2
+ Y Pr)a W Slimin) > FG+D)G —imin+ 1)+ Y ®G) Y fli+1)(i— )]
=0 1=imin J=imin i=j+1
(12)

By replacing Eq. (11) and Eq. (5) in Eq. (1), we have an over-approximation of expected
number of zones that a site is a part of:

lmaz—1 tmaxz—1
E[# Of A+ *] < PT(lmaz)(imaz - Zmzn + 1) Z Z f ’Lmzn + 1)
1=0 1=imin
imax—1 Ilmaz—1 1
+ (0 = DIPr (e [S(min)imaz = imin + 1)+ > @) imaz =D+ D Pr)(1 = g57)%
J=tmin 1=0
imaz—1 tmax—1 imax—1
Slimin) > f@G—imin + 1)+ > ®G) > fi)i— )]
1=imin J=%min 1=j+1
(13)

By replacing Eq. (12) and Eq. (4) in Eq. (1), we have an under-approximation of expected
number of zones that a site is a part of:

lnlaz_l imaz_Q
E[# of A+ #] > Pr(lmas)(imae — imin + 1)+ Y Pr(l) Y fli+1)(i = imin +1)
1=0 i=imin
imaz—1 lmaz—1 1
+ (0 = DIPr (a1 (min)(imaz = imin + 1)+ Y 5 () imaz =D+ D Pr)(1 = 557)
J=%min =0
imaz —2 imaz—1 imaz —2
Slimin) Y Fi+ DG —imn+ 1)+ Y ®G) > fG+1)(— )]
1=lmin J=tmin i=j+1

(14)
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