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—— Abstract

Radio Access Network (RAN) slicing, a key 5G feature, enables different slices (i.e. tenants or
applications) to share the same physical network infrastructure while pursuing diverse objectives such
as fairness, prioritization, or maximizing throughput. Each slice is allocated a share of radio resource
blocks (RBs), which it further schedules among its users as per its own performance objective. In this
paper, we identify the unique challenges that arise when performing RAN slicing in today’s multi-cell
deployments that require a mechanism for managing interference among cells. We highlight how
interference management decisions, that can be easily made in the absence of slicing (where all users
share a common objective set by the network operator), become challenging with 5G slicing where
we must respect the individual objectives of multiple slices, while retaining performance isolation
across slices. We present a system, RadioNinja, that tackles this challenge through a unique decision-
making framework that allows different slices to independently contribute towards interference
management decisions. RadioNinja further employs a series of techniques to make such decisions
within tight RAN scheduling budget of hundreds of microseconds. Trace-driven simulations with real-
world channel measurements show that RadioNinja improves slice-level objectives (e.g., throughput,
fairness, flow completion times) by 20-60% over state-of-the-art baselines, while consistently meeting
sub-millisecond decision deadlines.
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1 Introduction

Network slicing [6, 49, 44, 22, 26] is a key architectural feature of 5G cellular networks.
It enables cellular network operators to divide their network resources among different
“groups of users” or services (referred to as slices) as per their respective SLAs (Service
Level Agreements). Each slice then further sub-divides its share of resources among its
own users as per its own policy or performance objective. In a way, 5G slicing crucially
extends the notion of multi-tenancy to cellular networks, with each slice acting as a tenant.
Slices can represent mobile virtual network operators (MVNOs), such as GoogleFi [27] or
Cricket [14], that leverage the physical infrastructure of network operators such as AT&T and
Verizon [25, 24]. They may also represent enterprise networks, application-driven slices (e.g.,
AR/VR, industrial control, or video analytics), campus deployments with heterogeneous
workloads, or 3GPP-defined service categories such as enhanced Mobile Broadband (eMBB)
and Ultra-Reliable Low-Latency Communications (URLLLC) [46, 18, 21, 55, 19]. These
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Figure 1 Radio resource blocks (RBs) at a base-station represented as a 2-D grid along time
and frequency axes. The time slot spanning an RB is referred to as a TTI. The RBs are scheduled
across users belonging to different slices (three slices depicted in this example). User U;; belongs to
slice S;.

slices share the same physical infrastructure, while pursuing their own diverse performance
objectives (e.g., fairness among all customers of an MVNO, maximizing throughput for a
slice comprising a team of drones, an enterprise prioritizing certain users, etc). A key goal
of slicing is to support such diverse performance objectives of each slice, while maintaining
their SLAs, and ensuring performance isolation between slices.

Network slicing is particularly crucial at the Radio Access Network (RAN) where users
across all slices share limited radio resources at a base-station. These radio resources are
split along the time and frequency axes into units called resource blocks (RBs), as shown in
Fig. 1. A user’s performance (i.e. its throughput or data rate) depends on the amount of
RBs assigned to it, as well as the quality of the wireless channel associated with those RBs.
This channel quality (that determines the data rate per RB) depends on various factors
including the user’s distance from the base-station, obstacles, and potential interference from
neighboring base-stations transmitting on the same frequency (i.e. on the same RB). A slice’s
SLA with the network operator governs its resource quota, i.e. number of RBs allocated to
the slice at a base-station [12, 34]. The slice then schedules its allocated RBs across its users
as per its own objective, taking the associated channel qualities into account.

RAN slicing has primarily been explored in the context of a single base-station (or
cell) [24, 35, 12]. But today we are seeing a sharp increase in multi-cell deployments [58, 50],
where the capacity and coverage of a single base-station (macro-cell) is scaled by deploying
multiple small cells in its vicinity [47, 42, 5, 8, 9], as shown in Fig. 2. Such multi-cell
deployments are crucial for keeping up with increasing demands for cellular capacity. However,
when two neighboring cells simultaneously transmit on the same frequency, the interference
between them can severely degrade the channel quality (and, thereby, the throughput) of
users in overlapping coverage regions. This necessitates some mechanism for interference
management.

Prior work has explored RAN slicing and interference management in isolation but today’s
scale and applications demands require deploying both of them in tandem. In this paper,
we identify and tackle the unique challenge that arises in such a setting — when we perform
RAN slicing in conjunction with interference management in multi-cell deployments.

To understand the challenge, let us first consider how interference can be managed
without any slicing, where all users share a single global objective set by the network operator
(typically proportional fairness among all users). Interference management in such a “no
slicing” setting has been explored by prior work [62, 54, 51]. A common strategy is to mute
the transmission of certain cells on specific RBs [4, 28, 48]. As depicted in Fig. 2, muting
the transmission of an RB (say the second RB at macro-cell C; in our example) ensures
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Figure 2 Typical multi-cell deployment with a macro-cell (C1) and small cells (C2, Cs3, and Cy).
The figure depicts how RBs at a given TTI are scheduled across users belonging to three different
slices at each cell. Muting the transmission of an RB at a cell (say, the second RB at C1, as shown)
ensures that users scheduled on that RB at neighboring cells do not experience interference from
Ci. The amount of interference from C experienced by a user in a neighboring cell depends on the
user’s proximity to C1, and impacts that user’s channel quality (illustrated by signal-strength bars).

that users at other cells scheduled on that RB do not experience any interference from Cj.
Deciding whether or not to mute an RB r on a cell C' requires weighing the cost of muting
incurred by users at cell C' (due to unavailability of muted RBs) versus its benefit enjoyed by
users at cells neighboring C (due to boosted channel quality caused by reduced interference).
It is relatively straightforward to reason about such a trade-off without slicing. The benefit
vs. cost of a muting decision can be analyzed based on whether or not it improves the
network operator’s global objective.

However, with 5G slicing, cellular users do not share a single global objective. Instead,
each slice optimizes for its own objective, which is incomparable with other slices’ objectives.
The decision to mute RB 7 on a cell C' might seemingly benefit a user of slice S; at a
neighboring cell, but hurt a user of another slice S; (which would have otherwise been
scheduled on RB r at cell C') hence violating the performance isolation promised by slicing.
So then how do we reason about such a muting decision while supporting diverse slice
objectives, and without violating performance isolation across slices?

Our system, RadioNinja, addresses this challenge by introducing a unique form of cost-
benefit analysis that allows slices to independently contribute towards a muting decision based
on their own objectives, without hurting the performance of any other slice. RadioNinja
restricts the penalty of muting an RB at a cell C' to the K slices that benefit from the muting
decision, by reducing each of their quotas at cell C' by 1/K RBs. This enables us to assess
the cost (reduced quota at cell C') versus the benefit (reduced interference at nearby cells)
independently for each of the K slices as per the slice’s objective. The slice pays the penalty
only if the muting decision improves its objective. RadioNinja mutes this RB at cell C only
if one or more slices are willing to pay the penalty.

RadioNinja must tackle multiple challenges to realize this approach. The first challenge
is identifying the set of K slices for which the benefits of muting the RB outweigh the costs.
The cost incurred by a slice (1/K RBs) depends on the number of benefiting slices K itself,
creating a chicken-and-egg problem. RadioNinja tackles this through an iterative approach —
starting with an initial set of slices that presumably benefit from the muting decision, and
repeatedly updating the set after conducting the cost-benefit analysis for each such slice. The
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second challenge stems from the fact that muting decisions are inter-twined with scheduling
decisions — whether or not an RB at a cell is muted influences the channel quality (and
therefore the scheduling decision) on that RB at neighboring cells. The changes in slice
quotas caused by a muting/scheduling decision for an RB further has a ripple effect on how
the subsequent RBs at each cell are scheduled. Therefore, in order to accurately assess the
cost and benefit of muting an RB, RadioNinja must ideally re-run the scheduler for all the
remaining RBs at each cell. However, doing so is prohibitively expensive — the joint muting
and scheduling decisions must be made within tight time slots (i.e. within a TTI, which
ranges from 250us to 1ms in 5G). RadioNinja handles this challenge by employing a series of
techniques that effectively approximate the benefit and cost of a muting decision without
re-running the scheduler, as detailed in §4. Our approximation techniques also help tackle a
third challenge — computing the penalty of reducing a slice’s quota by a fraction of an RB
(despite the fact that RBs are allocated to users as a whole and cannot be split).

We implement RadioNinja in an open-source RAN simulator [45] and collect real-world
traces to perform trace-driven evaluations in §6. Our evaluation, across a variety of realistic
scenarios spanning hundreds of users split across multiple slices with diverse objectives,
shows how RadioNinja results in 20-60% improvement in the performance of individual
slices (on their desired performance objective) when compared to several baselines. Our
comparative baselines include (i) a RAN slicing system that independently schedules RBs at
each cell without any interference management or muting [12], (ii) a baseline that makes
its muting decision based on a single shared objective [4, 28, 48], ignoring the individual
objectives of each slice, and (iii) a strawman approach to enable interference management
with slicing [17] that we detail in §2. Our evaluation further shows how the approximation
techniques employed by RadioNinja reduce the computation overhead by orders of magnitude,
enabling it to make its muting decisions within stringent scheduling time budgets of < 1 ms,
without compromising on their correctness.

2 Background and Related Work

2.1 Radio Access Network (RAN)

Radio Access Network (RAN) refers to the wireless last-mile of cellular networks, connecting
the base-station to the end-devices (referred as user equipments or UEs). We explain some
relevant RAN concepts below.

Resource Block

RAN resources are divided along the frequency and time axes. Specifically, the frequency
bandwidth of the radio spectrum is divided into multiple sub-carrier frequencies, and time is
divided into equal slots called TTIs (Transmission Time Intervals). In 5G, a TTI slot can
range from 250us-1ms [23]. A resource block (RB) is formed of 12 frequency sub-carriers
and 1 TTTI slot, and is the smallest resource unit that can be allocated to a user. We can
thus visualize the RBs as being organized into a 2D grid as shown in Fig. 1. For simplicity,
the figure depicts RBs as the scheduling granularity across users. In practice, network
operators schedule radio resources in the granularity of resource block groups (RBGs) to
reduce control overhead. Each RBG contains a fixed number of consecutive RBs ranging
from 2 to 16 [52, 23]. Henceforth, we will use the term RBG to refer to the scheduling
granularity of radio resources across users.
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Channel Quality and User Performance

The performance of a user (i.e. how much throughput or data rate they achieve) depends on
the number of RBGs assigned to them and the channel quality associated with those RBGs
(higher channel quality results in a higher data rate per RBG). Typically, the closer the user
is to a base-station, the higher is its channel quality. However, obstacles or interference from

neighboring base-stations can introduce noise in the signal and degrade the channel quality.

Different users (in different locations) can thus experience drastically different channel quality
for the same RBG. Moreover, a given user can also see a high variation in channel quality
across RBGs, even within the same TTI, due to a phenomenon called frequency selective
fading. The combination of these factors motivates the need for incorporating channel
awareness when scheduling radio resources across users [11, 12]. The user equipment (UE)

periodically reports its channel quality to the base station to enable channel-aware scheduling.

We provide a brief primer on channel-aware scheduling mechanisms in §3.1.

2.2 RAN Slicing

As mentioned in §1, RAN slicing is a key 5G feature that brings the notion of multi-tenancy
to cellular networks. With RAN slicing, the network operator (e.g. AT&T, Verizon, etc)
divides the radio resources among heterogeneous slices (MVNOs, enterprises, applications,
etc) as per their SLAs [25]. The SLA of a slice translates to a minimum quota of RBGs that
the network operator must allocate to it at a base-station [12, 34]. Each slice then schedules

its quota of radio resources across its own users as per its own performance objective (e.g.

fairness, prioritization, throughput maximization, etc). The performance objective typically
varies across slices [18, 21, 46]. A slicing system must support such diverse slice objectives,
and ensure each slice gets its quota of resources while retaining performance isolation across
slices.

Prior work on RAN slicing has largely been restricted to scheduling radio resources at a
single base-station (e.g. [24, 34, 30, 12]). Other works [40, 10] look at the problem of mapping
network-wide service-level agreements (SLAs) to per-cell resource quotas for a given slice
but ignore potential interference across cells. We leverage these prior works for determining

per-cell slice quotas and doing channel-aware slicing and scheduling [12] (as detailed in §3.1).

The primary focus of our work, however, is to address the challenges that arise from the
interplay of RAN slicing with interference management across multiple cells.

In terms of its goal, RAN slicing bears similarity to the classical concept of hierarchical
fair scheduling, where we want weighted fairness across slices, and fairness (or other objectives
such as prioritization or throughput maximization) within each slice. However, classical
hierarchical scheduling assumes that the top-level allocator can reason about resource
allocation independently of how those resources are used internally. In a wireless RAN,
this assumption is already challenged even in a single-cell setting because user performance
depends not only on how many radio resources (i.e., number of RBGs) are allocated, but
also on the quality of the wireless channel associated with those RBGs. Moreover, channel
quality varies across users for a given RBG, and across RBGs for a given user. This channel
quality variation must be taken into account when assigning RBGs to different slices (and to
different users within a slice). As a result, achieving hierarchical objectives efficiently requires
channel-aware assignment of RBGs across slices (and across users within each slice), rather
than treating RBGs as interchangeable units. §2.5 exemplifies how such channel-aware RAN
slicing helps improve overall system throughput.

Our prior work, RadioSaber [12] proposed a system for channel-aware scheduling of radio
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resources at a given base-station across slices, and across users within each slice. However,
RadioSaber makes a crucial simplifying assumption: the utility of a radio resource is local
to a cell and does not depend on scheduling decisions made at other cells. This locality
assumption holds in single-cell settings, but is violated in multi-cell deployments where
wireless interference impacts scheduling decisions across cells.

In this work we focus on the effects of this wireless interference in multi-cell settings,
that introduces new and unique challenges to the problem of hierarchical scheduling across
slices. With interference, the quality associated with an RBG R; and cell C; depends not
only on which slice (and which specific user within the slice) is scheduled on R; at Cj, but
also on whether any user (belonging to any slice) is scheduled at R; at neighboring cells. In
other words, the effective value of a radio resource is no longer local to a single cell. Because
of this cross-cell scheduling dependency, we cannot perform channel-aware RAN slicing for
each cell in isolation as was done by RadioSaber [12]. Instead interference management
decisions must be made jointly with channel-aware scheduling for each RBG across all cells
and across all slices. This coupling therefore implies that interference management decisions
cannot be cleanly layered above slicing: whether muting a resource is beneficial or not
depends on slice-specific objectives and intra-slice scheduling decisions. Consequently, this
cross-cell dependency can easily undermine performance isolation across slices — how slice
Sk is scheduled at one cell impacts the channel quality (and hence scheduling outcomes)
of another slice at a different cell. Our work deals with this challenge: how can we retain
performance isolation while doing channel-aware scheduling across slices and interference
management across cells.

2.3 Multi-Cell Deployments

As depicted in Fig. 2, network operators commonly scale cellular capacity by augmenting
coverage regions of macro base stations with lower powered “small cells” [47, 9, 5]. These
small cells can be deployed in locations where the macro cell provides poor coverage due to
increased distance or obstacles such as high buildings. A macro-cell region (with coverage
radius of 1-25Kms) can be expected to support 1-10 small cells [2] (each with coverage radius
spanning 0.1-1Kms) [42, 7, 41, 13]. Recent years have witnessed a sharp increase in such
multi-cell deployments. At the end of 2022, there were 142K macro-cell towers across the
US, and a total of 452K outdoor small cell nodes [58]. It is projected that by 2027, there will
be 13 million outdoor 5G small cell deployments at a global level [50].

One way to deploy multiple cells is to partition the frequency bandwidth among cells, such
that they never interfere on the same band. However, such static partitioning of frequency can
result in severe under-utilization of the network and reduced user throughput (as highlighted
in Appendix A). Therefore, an increasingly common mode of deploying multiple cells is for all
the cells to share the same frequency band, which avoids partitioning the bandwidth, thereby
increasing the overall network capacity [20, 16]. This, however, results in interference, and
necessitates a mechanism for managing it.

2.4 Interference Management

Interference management has been studied in 4G context (without slicing). CoMP (Coordin-
ated Multi-Point) [1, 56, 39, 31, 38, 42] encompasses a suite of techniques for managing
interference that vary in their deployment complexity, including techniques such as coordin-
ated beam-forming, coordinated muting, etc. In this paper, we focus on coordinated muting,
which enables muting selected RBGs on selected cells during each TTI to manage interference.
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Figure 3 Three RBGs at three cells assigned across users split among three slices. The numbers
in parenthesis denote the data rate achieved by the scheduled user. RSEP (left) restricts slices to
use the same RBGs across cells. A more flexible channel-aware assignment (right) results in higher
performance across all slices.

When compared to other CoMP strategies, muting is far more feasible to implement.

It requires the cells to synchronize and coordinate with one another at per-TTI timescales
of ~ 100s us. Prior work demonstrated the feasibility of deploying muting [31, 32], and of
achieving sub-ms coordination between cells [42]. More recently, the move towards virtualized
RAN, where RAN processing is deployed in servers hosted in the edge datacenters (away
from, but still in the geographical vicinity of, the base station) further provides a ready-made
platform where such coordinated decisions across multiple cells can take place [37, 61], that
can be leveraged by our system.

However, interference management (and muting) has only been explored in the context
of optimizing a single objective (i.e. proportional fairness) across all users [4, 28, 48] — we

provide a primer on how muting works in this traditional single objective scenario in §3.2.

The focus of our work is to manage interference via muting in the presence of RAN slicing,
with each slice optimizing its own diverse objective.

2.5 Interference Management with Slicing

Summarizing the context so far, prior work on RAN slicing has not considered the problem
of interference management in multi-cell scenarios. On the other hand, the prior work on
interference management has not considered the new regime of network slicing where users
are grouped into slices with diverse objectives.

One exception, that considers both interference management and slicing, is RSEP [17].

RSEP proposes an extreme solution of assigning a given slice exactly the same set of resource
block groups (RBGs) at each cell. We depict this in Fig. 3 with the table on the left — slice
S is assigned the first RBG at each of the three cells (C, Co and Cj3), while slices So and
S3 are assigned the second and third RBG respectively at each cell. Such an assignment
ensures that any muting decision for an RBG only affects users from the same slice at the
neighboring cells. It thereby reduces the problem of muting to the no slicing (single objective)
setting. However, such a constrained assignment inherently ignores channel diversity, where
the channel quality on a given RBG varies drastically depending on which user is scheduled
on it [12, 11, 59] (as explained in §2.1). This results in inefficient usage of the radio spectrum
and reduced network throughput (up to 40% lower than channel-aware slicing [12]).
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Fig.3 illustrates this through a simple example. The table on the left shows the schedule
with RSEP, where each slice is restricted to use the same RBG at each cell. Slice S prefers
to mute its assigned RBG at cell Cy to boost the channel quality of its user U;; at the
neighboring cell C;. Slice Sy’s user at C3 (Uys) is not significantly impacted by interference
from C5. The numbers in parenthesis denote the data rate (throughput) achieved by the
scheduled user. The total data rate experienced by Slices S, So, and S3 (summed across
their scheduled users) is 60, 60, and 85 respectively.

The table on the right shows a more “flexible” assignment of RBGs across slices that
can leverage channel diversity. Such an assignment can achieve superior performance by
allowing different slices to use different RBGs across different cells, as per their respective
channel qualities (e.g. RBG 2 is assigned to slice Sy at cell C; and to slice S3 at cell Cs).
The unrestricted assignment further allows a given muting decision to simultaneously benefit
multiple slices thus amortizing the cost of muting (for e.g. muting the transmission of
RBG 1 at cell C; boosts the channel qualities of users U;; and Usg in Slice S7 and Slice
Ss respectively). In this case, the total data rate, summed across all scheduled users for
Slices S1, Sa, and S5 is 110, 110, and 140 respectively; which is higher across the board when
compared to RSEP.

While this is a toy example, our evaluation with real-world traces in §6 reinforces the
performance benefits of such “flexible” channel-aware assignment of RBGs across slices and
cells, when compared to RSEP’s restricted assignment.

However, enabling such flexible channel-aware assignment requires reasoning about the
muting decision across multiple slices with diverse objectives: Is it okay to mute the first
RBG at Cy to benefit slices S; and S37 Which slice incurs the cost of this muted RBG and
how? We need a way to answer such questions in a manner that still retains performance
isolation across slices. Our system, RadioNinja, deals with this challenge.

3 Primer on Relevant Mechanisms

Before diving into RadioNinja’s design, we provide a brief primer on mechanisms for channel-
aware slicing at a single cell (§3.1), and for interference mechanism via muting in a no slicing
setting with a single global objective (§3.2).

3.1 Channel-aware Slicing and Scheduling
Channel-Aware Inter-Slice Scheduling

RadioNinja leverages RadioSaber [12] for channel-aware slicing at each cell, where an inter-
slice scheduler assigns RBGs to slices and an intra-slice scheduler assigns RBGs to users
within the slice. In each TTI, the inter-slice scheduler greedily assigns RBGs to slices, one
RBG at a time as follows. It queries each intra-slice scheduler asking which user will be
scheduled on the RBG if that RBG is assigned to that slice. Each slice responds to this
query based on its own intra-slice scheduling policy (detailed next). The responses allow the
inter-slice scheduler to determine the channel quality associated with that RBG for each slice
(based on which user each slice picks). It then assigns the RBG to the slice with the highest
channel quality. As mentioned in §2.2, each slice has a per-TTI quota of RBGs derived from
its SLA. While greedily assigning RBGs to slices, the scheduler tracks their quota, and avoids
assigning more RBGs to slices that have exhausted their quotas.
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Figure 4 Example showing muting for a single objective (no slicing). The figure shows user
locations with respect to cells. The table on the bottom shows the assignment of RBG R; at each
cell for the different muting hypotheses. The number in parentheses indicates the score for the
corresponding user. Muting RBG R; at cells Cy or C2 produces a net benefit, while muting it at Cs
produces a net loss.

Channel-Aware Intra-Slice Scheduling

For a given RBG R;, the intra-slice scheduler assigns each of the slice’s user uy a score
(score(ug, R;)) based on the desired performance objective of the slice. It then assigns R; to
the user with the highest score. For example, a slice wanting to maximize throughput would
set score(u, R;) = inst_rate(ur, R;) (i.e. the instantaneous data rate uj would achieve if it
is allocated R;, as per its channel quality for R;). A slice can optimize for proportional fairness

(a popular objective in cellular networks [59, 29, 36]) by weighing the instantaneous rate
inst_rate(u,R;)
avg_rate(u)
The scores can also be weighed as per user priorities. Such score-based scheduling of RBGs
across users is also adopted in a no slicing setting, where all users share a common global

objective [11].

with the average rate allocated to uy so far, i.e. by setting score(uy, R;) =

3.2 Muting under a Single Objective

We next detail how muting decisions are made without slicing where all users share a single
global objective. Past work adopts a greedy strategy for this [4, 28, 48]. In each TTI, we
greedily pick RBG R;, and analyze the cost-benefit trade-off of muting that RBG at each cell,
one cell at a time (referred to as the muting hypothesis). It is beneficial to mute R; at cell C;
if the boost in channel quality at the neighboring cells overpowers the penalty of losing out on
that RBG at C;. To assess this, we compute the system-wide total score under each muting
hypothesis H; (where R; is muted at cell C;) and under no muting (denoted as hypothesis
Hy). The total score under hypothesis H; is computed as: ZukeU(R ) score(uy, R;). Here,
U(R;, Hj) denotes the set of users that are scheduled on R; at each cell under hypothesis
H;. The user scores are computed as described in §3.1, as per the shared global objective.

The difference between the total score of a muting hypothesis H; and no muting hypothesis
Hj gives us the net benefit of muting RBG R; at cell C;. If the net benefit is negative for all
muting hypothesis, R; is not muted at any cell. Otherwise, we select the hypothesis with the
largest net benefit and mute the RBG at that cell.

Fig. 4 presents an example for this, where we have 3 cells and want to determine whether
or not to mute the transmission of a cell on a given RBG R;. Hypothesis Hy is when R; is not
muted at any cell (top row in Fig. 4). The three cells schedule UEs Uy, Uy and Uz, that do
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Figure 5 The example above shows the assignment of RBG R; across slices under no muting
hypothesis (Hp) and the hypothesis where the RBG is muted at cell C2 (H2). The numbers in
parenthesis indicate the user’s slice association.

not experience significant interference from other cells. The total score for Hy (last column)
is computed by adding the scores of each of these three UEs (indicated in parentheses). The
next hypothesis Hy (second row) is where R; is muted at C; — this impacts the scheduling
decision at cell Cy, boosting channel quality of “edge” UE Us. The set of scheduled UEs,
based on whom H;’s total score is computed, therefore includes Us at Cy and U7 at Cj.
Likewise, hypothesis Hy (third row), where R; is muted at Cs, boosts the channel quality of
“edge” UEs Us and Ug, and they get scheduled on this RB at cells C7 and Cj instead. The
overall score of Hy is computed by adding their scores. We similarly consider the impact
of muting R; at C3 and compute the overall score of Hz. Comparing scores of Hy, Hs and
H; with Hy, we can see how muting R; at C; or Cs produces a positive net benefit while
muting it at C3 incurs a loss. The benefit of muting at C5 is higher, so the system will mute
R; at (5. This freezes the muting and scheduling decision for that RBG, and we then move
on to the next RBG and repeat the same steps.
A few points are worth noting:

In the above example, we could have additional hypotheses where we mute R; on more
than one cell (resulting in 2 hypothesis for each RBG, where M is the number of cells).
We observed that muting multiple cells for the same RBG provides limited benefit since
most interference occurs between the macro-cell and small cells, i.e., muting either the
macro-cell or one of the small cells that interferes with the user being served by the
macro-cell is sufficient. So we restrict the assessment to consider muting up to one cell
per RBG (making the number of hypotheses linear in M).

The muting hypothesis is evaluated without actually muting the cell — it uses knowledge
about the channel quality each user will experience with and without interference from
the neighboring cells. (The 3GPP standard specifies the use of specific “resource elements
to enable such interference measurement [3, 15], as detailed in Appendix B).

”

4 RadioNinja Design

RadioNinja uses the greedy muting approach described in §3.2, where in each TTI, it greedily
decides whether or not to mute an RBG at any cell, one RBG at a time. However, rather than
catering the muting decision towards a single shared objective across all users, RadioNinja
makes these decisions in manner that respects individual slice objectives (as described in
the remainder of this section). The greedy per-RBG muting decisions are made jointly with
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greedy channel-aware scheduling decisions (i.e. which users, belonging to which slice, should

be scheduled on the unmuted RBGs) — RadioNinja uses RadioSaber’s scheduling logic for

this, as described in §3.1. Jointly making muting decisions with channel-aware RAN slicing

requires RadioNinja to address multiple challenges, that we detail in this section:

1. How do we reason about a muting hypothesis while maintaining performance isolation
between slices? (§4.1)

2. How do we efficiently compute the benefit of a muting decision for a given slice based on
its own objective? (§4.2)

3. How do we efficiently compute the cost of a muting decision for a given slice based on its
own objective? (§4.3)

4. How do we decide which muting hypothesis to implement (i.e. which cell to mute on an
RBG) when different slices benefit from different decisions? (§4.4)

4.1 Reasoning about a muting hypothesis

While it is straightforward to reason about muting decisions when all users share a single
common objective (as described in §3.2), RadioNinja must deal with the challenge of handling

diverse slice objectives in a manner that maintains performance isolation between slices.

Fig. 5 illustrates the challenge by considering how an RBG R; is assigned to users across
slices under no muting and when it is muted at cell Cy. When R; is not muted (hypothesis
Hy, top row), users of slices S7, Sy and S3 are scheduled on R; at cells C7, Cy and Cs,
respectively. Muting R; at Cy (hypothesis Hs, bottom row) changes the channel quality
(and scores) of users in the neighboring cells C and Cj, causing R; to be assigned to a
different set of slices (S4 at Cq and S at C3). It therefore appears as if the decision to mute
RBG R; at cell Cs benefits slices S4 and Ss, at the cost of slices Sy, S, and S3. How do we
make a systematic choice in such a scenario — is it okay to help some slices at the cost of
others? Wouldn’t that violate performance isolation across slices? RadioNinja effectively
avoids making such choices using the following insight:

Resource attribution to retain isolation

Rather than considering a muted RBG at a cell C; as a wasted resource that belongs to
no one, we count it towards the quota of the K slices that benefit from muting it, i.e. we
reduce the quota of those slices at C; by 1/K RBGs. This restricts the cost of muting (i.e.,
reduction in available resources at C;) to these K slices that benefit from boosted channel
qualities at neighboring cells. This, in turn, enables independent cost-benefit analysis based
on the specific objectives of these slices.

Revisiting the example in Fig. 5: given how we account for the muted resource, since
the quotas of S1, S, and S3 remain intact, they are not really penalized by the decision to
mute R; at Cs — each of these slices would simply be assigned a different RBG at cells Cf,
C5, and Cj5 respectively. Sy and S5, in contrast, may lose some quota at Cs if the RBG is
muted — the cost of losing that quota at Cy should be compared with the benefit that these
slices experience at cells C7 and C5 due to muting. For instance, if serving S4’s user Uy at
(1, comes at the cost of penalizing a higher priority user at Cs due to the reduced quota, Sy
might not want to proceed with the muting decision.

Challenge

How do we identify the set of K slices that benefit from muting, if weighing the benefit vs.

cost of muting depends on K itself (as we reduce quota of benefiting slices by 1/K RBGs)?
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Figure 6 RadioNinja’s Workflow

Our approach

We use an iterative algorithm (summarized in Fig. 6). Consider the hypothesis H; of muting
Ri at Cj:

(i) We start with assuming that each slice that uses R; at C;’s neighboring cells (i.e. at
C,, # C;) under H; is benefited by the muting. We refer to this set of slices as S. We
accordingly reduce the quota of each slice in S by Fll RBGs at cell Cj.

(ii) We then individually assess the benefit (§4.2) and cost (§4.3) of muting for each slice in
S. If the assessment reveals a slice S’ in § is hurt by muting (i.e. the cost it pays due to the
quota reduction at Cj; is higher than the benefit it gets at the neighboring cells), then we
exclude it from participating in the muting decision. Specifically, we undo the reduction in
quota of slice S” at C, and remove it from the set S. This reduces the size of set S, thereby
increasing the share of quota reduction at C; for the remaining slices in S.

(iii) We accordingly update the cost of muting for the remaining slices in S, and re-assess
the benefit vs cost of muting for each of these slices as per step (ii).

(iv) We repeat steps (ii) and (iii) in a loop until the set S stops changing, giving us the
converged set of K = |S] slices that benefit from the muting hypothesis. (The number of
iterations is bounded by the number of cells.)

So for our example in Fig. 5, we will start by assuming both S, and S5 benefit from
muting hypothesis Hs, and evaluate the cost of reducing 0.5xRBG from the quota of both
of these slices at Cs. If the cost of muting for S; turns out to be higher than the benefit
it sees, Sy will get back its quota of 0.5xRBG at C3 and it will be removed from S. The
muting hypothesis Hy will then be considered valid if S5 sees sufficiently high benefit over
the cost of 1XxRBG quota reduction at Cs.

The following is worth noting.

Slice Eligibility for Muting: A slice in S can participate in the muting decision only if
it has sufficient quota (at least ﬁ RBGs) remaining at C; to pay for the cost of muting.
If a slice has exhausted all of its quota at C; (from the previously allocated RBGs in that
TTI), then it cannot induce muting at C; and cannot be added to the set S.

Valid Muting Hypothesis: We consider H; to be a valid hypothesis if the resulting
set S is non-empty (i.e. there are non-zero number of slices that benefit from the muting
decision after paying the shared cost of muting). We similarly check the validity of other
muting hypothesis (i.e. of muting R; at other cells). If none of the muting hypotheses for
R; are valid, we do not mute it at any cell. If there are multiple valid muting hypotheses,
we select one (as detailed in §4.4) and proceed with that decision.

4.2 Computing Benefit of Muting

We now explain how RadioNinja computes the benefit of a given muting hypothesis for a
given slice in §. Let us refer again to the example in Fig. 5, and consider how to compute
the benefit of muting hypothesis Hy (i.e muting of RBG R; at Cs) that slice Sy enjoys at
the neighboring cell C;. At a high-level, this can be computed by comparing the score of
Sy at cell Cy with and without muting R; at Cy (with scores defined based on the slice’s
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objective, as detailed in §3.1). However, naively comparing the assignment of R; under Ho
with the no muting hypothesis Hy, it would seem that the performance of S4 (which was not

even assigned R; at any cell under Hy) is far better under Hy (where it is assigned R; at C).

This is a misleading assessment that overestimates the benefit of muting. This is because, by
getting scheduled on R; at C7 under hypothesis Hs, S; uses up a quota of 1 RBG at Cy. It
will therefore be scheduled on 1 less RBG among the remaining N — 1 RBGs in that TTI
under Hy, when compared to the remaining N — 1 RBGs under Hj.

In order to truly assess the benefit of muting, we need to compare how the RBG quota
used by Sy to schedule user Uj; on R; under Hs compares to the use of that RBG quota
under Hy. This ideally requires comparing the total score of Sy across hypotheses Hy and
H;, not just for RBG R;, but for all of the remaining NV — 1 RBGs in that TTI, such that we
can account for how that RBG quota is subsequently used under Hy. This implies that we
need to run the scheduler to compute the hypothetical assignment of UEs on these remaining
N — 1 RBGs for each muting hypothesis that we wish to greedily assess for each RBG. As
we show in §6, the O(N?) complexity induced by this is prohibitively expensive, given the
tight TTT timescales at which scheduling and muting decisions must be made. So how do we
work around this?

Our approximation technique

We use a simple heuristic to approzximate the benefit of muting without re-running the
scheduler for the remaining RBGs. Referring to our example in Fig. 5, in order to assess the
benefit to Sy at neighboring cell C7 under hypothesis Ha, we compute which Sy user would
have hypothetically been allocated R; at C; under no muting, if that RBG was restricted
to being allocated exclusively to S;. We then subtract S4’s score at C; obtained from this
hypothetical assignment of R; under no muting from its score at C7 under hypothesis Hy. We
use the outcome as our proxy for the benefit of muting. This essentially captures the impact
of reducing interference from Cs for slice Sy’s users at C';. However, it masks the impact of
channel diversity in our assessment (since in reality, Sy is not allocated R; under no muting,
but would instead be allocated a different RBG). Nonetheless, we find this approximation
works well in practice because in situations where the benefit substantially outweighs the

cost of muting, the effect of interference mitigation overpowers the effects of channel diversity.

When the benefit is low (interference effects are small), the slice is anyway removed from set
S, and the precise value of the benefit does not make a difference.

If a given slice Sy has users scheduled in R; at multiple neighboring cells under hypothesis
H;, we approximate the benefit seen by .S, at each of these cells and sum them up to get the
overall benefit to S, for hypothesis Hj.

4.3 Computing Cost of Muting

As mentioned before, we account for the cost of muting RBG R; at C; by subtracting

ﬁRBGs at cell C; from the quota of each slice in set S (that benefit from the muting).

Assessing this cost for a given slice Sy requires comparing how Sy, is scheduled on remaining
RBGs at C; with and without muting (i.e. with and without the quota reduction). This
causes two hurdles. First, as discussed in §4.2, re-running the schedulers across all remaining
RBGs for each muting hypothesis is prohibitively expensive. Second, how do we even assess
the impact of fractional quota reductions? RBGs must be wholly allocated to a single user,
and cannot be split across multiple users. When multiple slices have non-integral quotas, the
scheduler allocates the last RBG in the TTI (that must ideally have been split between these
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slices) to one of these slices picked randomly. It then keeps track of the (fractional) surplus
or deficit in quota allocation, that rolls over to the next TTI. Rolling over of fractional offsets
ensures that a slice pays its due cost of muting over time. But the impact of that might not
be seen in that TTI, and re-running the scheduler over multiple TTIs would increase the
computational complexity further.

Our approximation technique

At the start of each TTI, we run the scheduler once to determine an initial assignment of
each RBG under the hypothetical scenario where no RBG is muted at any cell. We use
this as a reference schedule to assess how much an RBG is worth to a given slice at a given
cell and accordingly compute the cost of quota reduction, when assessing individual muting
hypothesis for each RBG (without re-running the scheduler).

The worth of an RBG for Sj at cell C; increases as we keep reducing the slice’s quota
at that cell. This is because when a slice’s quota is reduced, it will kick out (i.e. avoid
scheduling) users on RBGs with the lowest score. Further quota reduction incurs a higher
cost, by kicking out users with higher scores. We account for this by clustering RBGs based
on their scores and using the average score within each cluster as the worth of the RBG in
that cluster. (We use a cheap clustering logic based on standard deviations from the average
score.) When computing the cost of quota reduction, we first consider RBGs in the lowest
score cluster. If the average score of that cluster is X, then a quota reduction of 0.5 has a
cost of 0.5X. If the total quota reduction for a slice (summed across muting decisions over
multiple RBGs) exceeds the number of RBGs in the lowest score cluster, we move over to
the next lowest score cluster, and so on.

The reference schedule does not account for potential muting at other cells which can
increase the worth of RBGs. Therefore, the cluster average scores taken directly from the
reference schedule as described above can underestimate the cost that slice S incurs for
muting at C';. To compensate for that, we update Si’s average score for each RBG cluster
at C; by multiplying it with an error ratio 8. We compute 5 from past observation — by how
much did Sj’s estimated score at C; in the previous TTI ¢ differed from the actual score it
achieved at C; in that TTI. Specifically, 5 = gz’;:, where A, ; is the (actual) average score
across all RBGs actually assigned to Sy at C; in TTI ¢ and Ej 1, is the (estimated) average
score across all RBGs assigned to S at C; in the reference schedule during the last TTT ¢.

4.4 Comparing Muting Hypotheses

We use the benefit and cost computed as described above to assess whether the muting
hypothesis is valid as outlined in §4.1. We empirically observed that in most cases, at most
one muting hypothesis is valid for a given RBG (for the reason explained in §3.2). When
there are multiple valid muting hypothesis H;, we pick one as follows. For each valid muting
hypothesis H;, we compute the total benefit seen by each slice in set S; (where set S; is the
converged set of benefiting slices in H;) and divide it by the cost incurred by that slice. We
then sum this benefit to cost ratio across all slices in set S;, and favor the muting hypothesis
that has the highest value for this sum.



M.T. Tariq, Y. Chen, H. Hassanieh, and R. Mittal 2:15

5 Implementation

Customizing Slice Objectives

We leverage the interface provided by RadioSaber [12] to enable slice operators to customize
their objectives using certain parameters. In particular, for a given slice Sy, we assign the
following score to user u,, in the slice for RBG R;: score(um, R;) = wy, X %,
where wy, is the weight of user w,, (set based on its relative priority) and o € R>( controls
the degree of fairness. This directly maps to optimizing a well-known parameterized objective
known as weighted alpha-fairness [33] for that slice. Each slice can configure w,, and «
differently to capture different objectives. With equal weights across all users, setting o = 0
maximizes throughput (MT). Setting @ = 1 achieves proportional fairness (PF), where the
a-fair objective is reduced to maximizing 3, . wmlog(zm) (Where ,, is the throughput
achieved by u,,). Increasing « further increases the degree of fairness among users of the
slice in terms achieved throughput.

Implementation in Simulator

Due to the absence of required features in current versions of open-source RAN testbeds
(notably, per-RBG muting capability), we evaluate our system using trace-driven simulations
that further allows us to scale to hundreds of users. We implement RadioNinja in an open-
source cellular simulator [45, 12]. Our simulator configuration for 5G small cell deployment
(detailed in §6) adheres to the 3GPP-specified parameters [2].

Collecting user traces

We use NG-Scope [60] deployed on USRP X310 to collect real-world channel quality data
from cellular base-stations across different frequency bands and operators. The tool allows us
to extract fine-grained metrics that capture channel quality of the UE across different RBGs
over time. We move around with this setup to collect channel quality traces at different
locations relative to the transmitting cell, mapping different chunks of the resulting trace to
different users in our simulations.

Software Implementation

We also implement RadioNinja as a separate module in software on a 12th Gen Intel Core
i9-12900F machine in order to evaluate its computational overhead. Specifically, we assess
the time it takes for making its joint scheduling and muting decisions across all RBGs in a
TTTI for different 5G configurations (that vary in TTI duration and the number of RBGs per
TTI). Our software implementation aligns with the move towards virtualized RAN, where
RAN processing is done in software [30, 61].

6 Evaluation
Our evaluation is divided into three key components:

1. Comparison with Baselines

In §6.2, we use trace-driven simulations across scenarios spanning hundreds of users split
across slices with diverse objectives to show how RadioNinja consistently outperforms the
following baselines:
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RadioSaber [12]: that does channel-aware slicing at each cell without any interference
management.

Single Objective Muting (SOM) [4, 28, 48]): This baseline uses channel-aware RAN
slicing, and schedules RBGs across users within each slice as per their individual objectives.
However, it uses the single objective muting algorithm discussed in §3.2 to assess the
scores of scheduled users and make its muting decision as per the specified global objective
agnostic of individual slice objectives.

RSEP [17]: that assigns a given slice the same set of RBGs at each cell, thereby ignoring
channel diversity when scheduling RBGs. It then performs objective-based muting
decisions for individual slices in isolation.

2. Comparison with Exhaustive Approach

In §6.3, we evaluate how RadioNinja’s techniques to approximate the benefit and cost of
muting closely match the outcome of the more rigorous (exhaustive) assessment that requires
repeatedly re-running the scheduler. RadioNinja’s logic comfortably fits within the TTI
budget across different 5G configurations, while the exhaustive approach is prohibitively
expensive.

3. Factor Analysis

We individually evaluate the impact of certain system design choices made by RadioNinja,
as discussed in Section 4, in Appendix E.

6.1 Experiment Settings

We simulate a multi-cell deployment comprising one macro cell and four small cells (similar
to what is depicted in Fig. 2) [2, 42]. We configure each cell with a bandwidth of 100 MHz,
split across 512 RBs per TTI, grouped into 64 RBGs [53]. The small cells are deployed
uniformly within the macro-cell’s coverage region at a randomly-chosen distance of at least
300m from the macro-cell and 500m from neighboring small cells. We simulate 160 users
split across 8 slices [2]. We situate each user within the coverage region of a randomly
selected small cell with a probability of 2/3, and outside of the coverage region of any small
cell (thereby attached to the macro-cell) with probability 1/3. Of the total users, 60% are
static while 40% are mobile (traveling at speeds ranging from 3 to 30 km/h). Once a user is
generated, we apply the 3GPP urban area path loss model to calculate the user’s wideband
channel quality (aggregated across all RBGs) based on its distance from each cell. We then
assign a real-world trace to each user that maps the computed wideband value for each cell
(thereby extracting the effects of channel diversity from real-world conditions). We use the
standard policy of assigning each user the serving cell from which it experiences highest
wideband channel quality. We configure each slice to have the same quota of RBGs at each
cell. We vary the slice objectives and user traffic patterns across different scenarios, and test
the scenarios against different scheduling and muting schemes described above. For each
setting, we run experiments with multiple random seeds that end up varying the specific user
locations, and user distribution across cells and slices. We capture different slice objectives
by varying the parameters of weighted a-fairness (as described in §5). We experiment with
two categories of user traffic patterns: (i) backlogged (representing high bandwidth video
streaming, gaming, etc that would saturate the datarate allocated to the user), and (ii)
web flows (fixed sized flows with Poisson inter-arrival times and flow sizes drawn from a
heavy-tailed distribution [43], generated at an average rate of 10Mbps).
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6.2 Comparative Evaluation

We use RadioSaber without muting as the reference baseline and report the relative changes
induced by RadioNinja, SOM, and RSEP over it for the given slice-objective.
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Figure 7 RadioNinja’s, RSEP’s and SOM-PF’s and SOM-TP’s impact on slice-level performance
when compared to RadioSaber (no muting) for (b) PF slices and (c) Max TP slices under Scenario
1, aggregated across 50 experiment runs with different seeds.

Scenario 1: Proportional Fairness and Maximizing Throughput

In our first scenario (summarized in Table 7a), we configure four slices with proportional fair
(PF) objective by setting o = 1. We refer to these as “PF slices”. The remaining four slices
(referred to as MT slices) are configured with the objective of maximizing throughput (MT)
by setting @ = 0. We accordingly experiment with two different variants of SOM baseline,

one configured with PF as the global objective and another with MT as the global objective.

Fig. 7 reports the results (aggregated over 50 runs): In Fig 7b we compute the percentage
improvement in the PF metric for each of the PF slices, when compared to RadioSaber
(no muting), and plot the resulting CDF. Fig 7c similarly plots the CDF of the percentage

improvement in the total throughput over RadioSaber (no muting) for each of the MT slices.

(i) RadioNinja vs RadioSaber without muting: RadioNinja’s interference management
benefits slices across the board when compared to no muting, resulting in an average of
33.5% increase in PF metric for the PF slices (Fig 7b) and 9.3% increase in throughput for
the MT slices (Fig7c).

(ii) RadioNinja vs SOM: SOM’s performance depends on how the global objective is
configured. SOM-PF (configured with PF objective) results in an average of 37.4% increase

in PF metric over RadioSaber without muting (similar to RadioNinja) for the PF slices.

However, it comes at the cost of hurting a large proportion of MT slices (more than 37%
slices, as shown in Fig. 7c) whose objective does not align with SOM-PF, hence violating
performance isolation. In contrast, SOM-MT (configured with MT objective) substantially
improves throughput for the MT slices (with an average increase of 35.2% over no muting),
but it comes at the cost of significantly hurting the PF slices thereby violating performance
isolation between slices (we cut off the x-axis at -200%, so the extent of this cost is not fully
visible). This drastic penalty is caused by the gross misalignment between SOM’s muting
objective (MT) and the slice’s scheduling objective (PF), where the PF slice often allocates
RBGs to relatively poor users (that suffer from low channel quality) in order to achieve
fairness, and SOM optimizing for throughput pointedly mutes those RBGs (with low MT
scores), thereby degrading the PF metric.

(iii) RadioNinja vs RSEP: RSEP’s performance is inferior to RadioNinja’s across all PF
slices, with 18.4% lower PF metric than RadioNinja on an average. For the MT slices, RSEP
fares slightly better than RadioNinja for half of the slices (which are incidentally allocated
reasonably good RBGs and benefit from isolated muting decisions with RSEP). However, it
has worse throughput than RadioNinja for the other half, of which 26.5% slices have even
worse throughput than the baseline, caused by RSEP’s channel-unaware scheduling.
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Figure 8 RadioNinja’s, RSEP’s and SOM’s impact on slice-level performance when compared
to RadioSaber (no muting) for the (b) PF slices and (¢, d) o = 3 Fair slices under Scenario 2,
aggregated across 50 experiment runs with different seeds.

Scenario 2: Varying Degree of Fairness

In this scenario (summarized in Table 8a), we configure four slices (referred as PF slices) with
proportional fair (PF) objective by setting = 1. The remaining four slices were configured
with an objective with higher degree of throughput fairness (« set to 3). We refer to these as
“a = 3 Fair slices”. We configure the SOM baseline with a global objective that maps to PF.
All users are configured with backlogged traffic pattern. We report the results (aggregated
over 50 runs with different seeds) in Fig 8. Fig 8b plots the CDF of percentage improvement
in the PF metric experienced by each of the PF slices, when compared to RadioSaber (no
muting). Fig. 8c plots the percentage improvement in the throughput of the poorest (lowest
10%ile) users over RadioSaber (no muting), as a measure of fairness for o = 3 Fair slices.
Fig. 8d plots the corresponding percentage improvement in the average throughput across
all users for @ = 3 Fair slices. We have the following key takeaways:

(i) RadioNinja vs RadioSaber without muting: RadioNinja’s interference management
benefits slices across the board. For the set of PF slices, the corresponding PF metric of each
slice increases with muting (as shown in Fig 8b), resulting in 48.0% average improvement
over RadioSaber without muting. For the set of & = 3 Fair slices, the throughput of the
poorest (lowest 10%ile users) increases by 56.1% with RadioNinja (Fig. 8c). The average
throughput (not directly aligned with fairness objective) also improves by a marginal 3.4%
(Fig. 8d).

(ii) RadioNinja vs SOM: We find that SOM, configured with global PF objective, performs
as well as RadioNinja for the PF slices (Fig 8b). It also improves 10%ile throughput for the
« = 3 Fair slices by 44.3% over no muting — SOM optimizing for proportional fairness with
a =1 helps these users, but not to the same extent as RadioNinja that can better tailor its
muting decisions with the o = 3 fair objective of these slices (Fig. 8c).

(iii) RadioNinja vs RSEP: RSEP’s performance is inferior to RadioNinja’s across all PF
slices, with 33% lower PF metric than RadioNinja on an average (Fig 8b). When compared
to RadioSaber no mute, RSEP is able to improve performance for 71% of slices due to muting,
but 29% slices experience worse performance due to channel unawareness. For the a = 3
Fair slices, we find that RSEP is able to achieve sufficiently good throughput (similar to
RadioNinja) for the poorest 10%ile users that are more prone to the effects of interference
than channel diversity (Fig. 8c). However, it induces a 26.9% reduction in the average
throughput across all users in this category of slices due to channel-unaware scheduling, when
compared to RadioSaber, resulting in an overall poorer outcome than RadioNinja (Fig. 8d).
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Figure 9 RadioNinja’s, RSEP’s and SOM W-PF’s and SOM-PF’s impact on slice-level performance
when compared to RadioSaber (no muting) for (b,c) Weighted PF slices and (d) PF slices under
Scenario 3, aggregated across 50 experiment runs with different seeds.

(a) Scenario 3 configuration

Scenario 3: Varying Weights Across Users

In this scenario (summarized in Table 9a), we configure the first four slices (referred to
as WPF slices) with weighted proportional fairness objective, setting o = 1, with 40% of
randomly selected users having a very high weight of 1000 and web flow traffic pattern, and
the remaining 60% users have a weight of 1 and backlogged traffic pattern. The remaining
four slices (referred to as PF slices) are configured with proportional fairness objective with
equal weight and backlogged traffic pattern across all users. We try two variants of SOM
here — SOM-WPF and SOM-PF. SOM-WPF is configured with weighted PF as the global
objective (where the prioritized 40% users of WPF slices have a weight of 1000 and all other
users have a weight of 1). SOM-PF is configured with PF objective. We report the results in
Fig. 9. We consider two metrics for WPF slices: reduction in median flow completion time
(FCT) of the prioritized 40% users, when compared to RadioSaber without muting (Fig. 9b),
and the average throughput of the remaining 60% users (Fig. 9¢). For the PF slices, we
report improvement in PF metric over RadioSaber without muting (Fig. 9d), similar to other
scenarios.

(i) RadioNinja vs RadioSaber without muting: RadioNinja results in 66.2% reduction
in median FCT for the prioritized users in WPF slices over RadioSaber without muting
(Fig. 9b), along with a 15.0% improvement in overall throughput of the non-prioritized users
(Fig. 9¢). Among the PF slices, RadioNinja increases the PF metric of all slices (Fig. 9d),
with an average increase of 45.1% over no muting.

(ii) RadioNinja vs SOM: SOM’s performance again depends on how the global objective
aligns. SOM-WPF results in 68% reduction in median FCT of the prioritized users in the
WPF slices over no muting. However, it has 25% lower PF metric than RadioNinja for the

PF slices, with 19% of these slices having even worse performance than without muting.

SOM-PF, in contrast, fares as well as RadioNinja for the PF slices, but has 21% higher
median FCT (or lower reduction in FCT) than RadioNinja for the prioritized users in WPF
slices.

(iii) RadioNinja vs RSEP: RSEP underperforms RadioNinja across the board in this
scenario due to its channel agnostic slicing. It has 48% higher median FCT for the prioritized
users in WPF slices when compared to RadioNinja. It further achieves 39% lower throughput
than RadioNinja for the non-prioritized users in the WPF slices. For the PF slices, RSEP
has 37.0% lower PF metric compared to RadioNinja on an average, with almost 40% slices
performing worse than RadioSaber no muting.
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Figure 10 RadioNinja’s, RSEP’s and SOM’s impact on slice-level performance when compared
to RadioSaber (no muting) for the (b) PF slices (b) MT slices and (c) Weighted PF Slices

Scenario 4: Varying Number of Slices

To test the scalability of RadioNinja across variable number of slices, in this scenario
(summarized in Table 10a), we increase the number of slices to 12, consisting of three
categories: PF slices (4 slices) optimizing for proportional fairness (o = 1), MT slices (4
slices) optimizing for throughput, and WPF slices (4 slices) using a weighted proportional
fairness objective. The WPF slices assign a high weight (1000) to 40% of randomly selected
users following a web flow traffic pattern, while the remaining 60% of users have a weight of
1 and follow a backlogged traffic pattern.

(i) RadioNinja vs RadioSaber without muting: RadioNinja maintains its trend of
ensuring slice-level isolation, providing targeted performance improvements across slices
while incurring minimal loss (only a small subset of MT slices see a slight —5% drop in
performance). For the PF slices, RadioNinja improves the PF metric by an average of 86%,
while for the MT slices, it increases throughput by 12%. Among WPF slices, it reduces the
median FCT of prioritized internet flows by 27%.

(ii) RadioNinja vs SOM: We evaluate all three SOM variants, each optimizing a different
global objective (PF, MT, WPF). As seen in previous scenarios, SOM benefits slices aligned
with its chosen metric but imposes severe penalties on others. SOM-PF improves the
PF metric by 72% (14% lower than RadioNinja) on average while limiting performance
degradation to only 5% of the slices. However, it performs poorly for MT slices, offering only
a 0.3% throughput improvement (11.3% lower than RadioNinja) while degrading 49% of the
slices. SOM-WPF reduces the median FCT of prioritized internet flows by approximately
30% but severely impacts MT slices, decreasing throughput for 80% of them by an average
of -5%, with some slices experiencing drops as large as -19%. SOM-MT performs well for
MT slices, improving throughput by 39%, but drastically degrades the PF slices, reducing
their PF metric by an average of -200%, as seen in Fig. 10b. It also increases median FCT
by up to 500%, though we cut off the y-axis at -10% to avoid distorting the figure.

(iii) RadioNinja vs RSEP: Due to its channel-unaware scheduling, RSEP consistently
underperforms compared to RadioNinja. It provides only a 6% improvement for PF slices
(80% lower than RadioNinja) while degrading 21% of slices. It further reduces the average
throughput of MT slices by -5% and offers only a 13% median FCT improvement (14% lower
than RadioNinja).

Scenario 5: Unequal Slice Weights Across Cells

We also evaluate the performance of RadioNinja under skewed user distribution patterns.
The traffic parameters for this experiment remain the same as those described in Table 7a.
The key difference is that approximately 75% of the users in the Max Throughput (MT)
slices are now attached to the Macro Cell, with only 25% attached to the Small Cells. As a
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Figure 11 RadioNinja ’s, RSEP’s and SOM-PF’s and SOM-TP’s impact on slice-level performance
when compared to RadioSaber (no muting) for (a) PF slices and (b) Max TP slices under Scenario 1
(Table 7a) with unequal slice quotas and distribution across cells.

result, the quota of the Max Throughput slices gets increased proportionally at the Macro
Cell and reduced at the Small Cells. Conversely, for the Proportional Fairness (PF) slices,
the distribution is reversed, with 75% of users attached to the Small Cells and the remaining
25% to the Macro Cell. The results are shown in Figure 11.

(i) RadioNinja vs RadioSaber without muting: RadioNinja continues to demonstrate
its effectiveness, offering a mean improvement of 10.2% in the PF metric for PF slices, while
maintaining slice-level isolation with near-zero loss across all slices (approximately 5% of
slices experience a minor mean loss of 1.5%). For MT slices, RadioNinja provides a 12.8%
improvement in throughput, again ensuring no performance degradation for any slice.

(ii) RadioNinja vs SOM: Under this unequal distribution, both variants of SOM—configured
with either the PF or MT metric—fail to perform well even on their respective metrics,
breaking slice-level isolation and degrading performance for most slices - 90% of all slices
under SOM-PF and 50% of all slices under SOM-MT see a reduction in their slice level metric
than compared to the no muting baseline. This failure stems from the skewed distribution
of users, where there are more MT users attached to the macro-cell and more PF users
attached to the small cells. So when SOM-PF attempts to maximize the PF metric globally
across all cells, it inadvertently includes PF scores of macro-cell users (largely comprised of
MT slices) in its global optimization decisions. Since these MT users inherently prioritize
throughput over fairness, their inclusion distorts the PF metric, resulting in poorly informed
decisions that harm slice-level objectives. Similarly, SOM-MT faces a similar issue: by trying
to globally maximize throughput, it incorporates MT scores from the PF users at small
cells, whose scheduling decisions focus on fairness rather than throughput. This mismatched
metric aggregation leads to suboptimal global optimization and significantly impacts the
individual objectives of the slices.

(iii) RadioNinja vs RSEP: The unequal distribution exacerbates mismatches between
RBs across cells, breaking RSEP’s RB-linkage rule. This prevents RSEP from effectively
managing interference on those RBs, further compounded by its channel-unaware allocation
mechanism. As a result, 90% of all PF slices and 76% of all MT slices experience degraded
performance compared to the no muting baseline.

Key Takeaway

RadioNinja consistently improves slice-level performance over RadioSaber (channel-aware
slicing without muting) for a substantial fraction of slices, while preserving performance
isolation—no slice is penalized by interference management decisions. In contrast, RSEP has
inferior performance, in some cases even relative to RadioSaber, due to its rigid assignment
of RBGs across cells that ignores channel diversity. Single-objective muting (SOM) typically
benefits slices whose objectives align with the chosen global objective, but systematically
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Figure 12 Comparing RadioNinja with exhaustive assessment in terms of (a) performance and
(b) computational overhead.

penalizes slices with misaligned objectives, thereby violating performance isolation. Even
when performance objectives are aligned, single-objective muting breaks down under skewed
user distributions, since the global objective no longer serves as a good approximation
of slice-level objectives. We further stress-test RadioNinja across a wide range of system
configurations — varying the number of users and cells (results are excluded for brevity
but the same trends hold), and considering deployments with multiple categories of slice
objectives. Across all these settings, the same qualitative trends hold: RadioNinja continues
to improve slice-level objectives without violating slice-isolation.

6.3 Comparison with Exhaustive Assessment

In Fig. 12a we show how RadioNinja (with its heuristics to assess benefit and cost of muting
without repeatedly re-running the scheduler) compares against a variant that re-runs the
schedulers for a more rigorous assessment (we refer to this variant as exhaustive assessment).
We find that RadioNinja’s well-designed approximations produce no significant difference
(+2.8%) in the outcome. For brevity, we only report a key result for scenario 3 — median
FCT of prioritized users in WPF slices —(Fig. 12a), but trend holds more generally.

We use the software implementation (described in §5) on a single core to evaluate the
runtime latency of both RadioNinja and the exhaustive assessment baseline. Fig. 12b shows
the results with 5G numerology 1 configuration (500us TTI and 32 RBGs), four small
cells and five slices. We vary the total number of users from 200 to 800 (3GPP standards
recommend 200-400 number of users for a cluster of 1 macro-cell and four small cells [2]).
We find that RadioNinja’s runtime latency comfortably fits within the TTI budget with
up to 600 users. The exhaustive assessment approach, in contrast, exceeds the TTI budget
even with 200 users. The exhaustive approach can potentially be parallelized to use more
cores and reduce latency, but the increased cost and power might not be worth it given
that RadioNinja’s approximations work as well (as shown in Fig. 12a). We repeat these
experiments for other 5G numerologies in Appendix D, confirming the same trends.

7 Concluding Remarks

In this paper, we present RadioNinja, the first system that performs channel-aware RAN
slicing across multiple cells while managing interference, maintaining isolation between
slices and supporting customizable and diverse objectives within each slice. While our work
focuses on downlink transmissions, we believe similar insights can also be applied to uplink.
Moreover, we believe RadioNinja’s framework is not limited to muting alone, but can be
applied more broadly to any coordination-based interference management scheme (we leave
detailed exploration to future work).
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Appendix

A Importance of Small Cells and Frequency Sharing
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Figure 13 System throughput under different frequency allocation strategies
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A key design decision in multi-cell deployments concerns how to partition the radio
frequency among cells. One option is to partition the frequency statically, ensuring that
neighboring cells never transmit at the same frequency and thus avoid interference. However,

this approach leads to inefficient spectrum usage, reducing the usable bandwidth for each cell.

An alternative is to allow neighboring cells to share the same frequency band (frequency reuse
one). This introduces the challenge of managing interference that would arise when two cells
transmit simultaneously on the same frequency, degrading the channel quality users in the
overlapping coverage regions of both cells. Nonetheless, dynamically managing interference
(depending on when which users suffer from it) still results in better resource utilization and

overall system performance compared to statically partitioning radio frequency among cells.

These performance benefits of frequency reuse are well-known [20, 16], making it a preferred
deployment choice in many settings [57].

To understand the significance of these choices, we conduct a simple experiment, starting
with 150 users, attached to a single macro-cell, randomly distributed in its range. We next
introduce 4 small cells into the macro-cell’s coverage region, but statically partition the
frequency (reserving 50% of the bandwidth for the macro-cell, with the remaining 50% used
by small cells). This results in 100% higher throughput compared to single cell setting. We
next evaluate the multi-cell setup under frequency re-use one, where the entire frequency
band is shared across cells. This improves throughput by 70% over the static partitioning
setup. Dynamically conducting interference management using the muting strategy described
in §3.2 (for throughput maximization objective) further improves throughput by 35%.

B Channel Quality Information for Muting

Assessment of muting decisions require knowing the channel quality of users with and without
interference. 5G New Radio (NR) scheduling allows for the configuration of a set of Resource
Elements (REs)—smaller individual subcarriers within an RBG—to be dedicated for the
purpose of interference measurement, known as the Channel State Indicator Interference
Measurement Resource (CSI-IM) [3]. Coordinating cells periodically co-schedule known
reference symbols and zero-power symbols sequentially, based on the Channel Feedback
interval (typically 40 ms), to achieve accurate per-cell interference values. For example,
on Resource Element r;, Cell C; would transmit a known Reference Symbol while Cell
Cj41 to Cy, would schedule a Zero Power Reference Symbol (ZP-CSI-RS); here, Cell C; is
transmitting and creating interference, while all other cells are ’quiet’ and only measuring
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the interference created by Cell C; [15]. This process is iteratively repeated by all the cells
in the coordinating cluster—one cell transmitting and the rest remaining quiet on those REs
and measuring the transmitter’s interference—to achieve accurate interference values. This
measurement is cost-effective since only a subset of an RBG (typically 2 out of 48 REs per
RBG) are allocated for CSI-IM, allowing normal data transmission on all remaining REs.

C Details about RadioNinja’s Cost Computation

We take the scores associated with each RBG allocated to a given slice at a given cell under
the initial allocation (mentioned in §4.3), and group these RBGs into clusters. Our clustering
logic is cheap and simple — we compute the average score (1) and the standard deviation (o)
across all RBGs allocated to the slice, and cluster them into atmost five sets — RBGs with
scores (i) < (pu — 20), (ii) > (u — 20) and < (u — o), (iii) within (u £+ o), (iv) > (1 + o) and
< (u+20),and (v) > (1 + 20).

We then compute the average score within each cluster, and use them to assess the worth
of an RBG. Suppose the cluster with lowest score for a given slice S, at cell C'; has n RBGs
and an average score of X. As long as the total quota reduced from slice Sy due to muting at
C; remains less than n RBGs, we associate a worth of X for each RBG (so a quota reduction
of 0.5RBGs will incur a cost of 0.5X). Once the quota reduction for Sy exceeds n RBGs
(due to muting decisions made over multiple RBGs), we move over to considering the cluster
with the next lowest average score, and so on. The clustering avoids excessive overfitting to
the specific RBG scores in the initial hypothetical allocation.

D Runtime Overhead

2000 1 RadioNinja 2000 1 RadioNinja 2000 1 RadioNinja

Exhaustive Exhaustive Exhaustive

2 15001 B Assessment 2 15001 B Assessment 2 15001 B Assessment
= = =
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Figure 14 The runtime latency of RadioNinja and the exhaustive assessment approach with 5G
numerology 0, 2, and 3. The corresponding TTIs are 125us, 250us, and 1000us.

Now we discuss how the numerology, the number of small cells, and the number of slices
affect the runtime latency of both RadioNinja and the exhaustive assessment baseline. In the
first experiment, we have five slices and five cells(same configuration in §6.3), and evaluate
both systems with 5G numerology 0(32RBGs, 1000us TTI), 2(16RBGs, 250us TTI), and
3(16RBGs, 125us TTI). Figurel4 shows the runtime latency of both systems with different
number of users. We can see the runtime latency of the exhaustive baseline is well above
one TTI in all numerology configurations with only 400 users. Nevertheless, RadioNinja
can support up to 600 users in numerology 0, 2, and up to 400 users in numerology 3. This
concludes that RadioNinja can be practical with most 5G numerology configurations.
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Figure 15 Impact of RadioNinja system optimizations on Median FCT

E Factor Analysis

To evaluate the impact of our system optimizations discussed in Section §6, we measure
system performance in their absence. We use the same underlying traffic distribution as in
Table 9a and record the reduction in median FCT for the prioritized web flows. The results
are reported in Fig. 15.

Impact of hypothetical baseline when computing benefit

RadioNinja computes the benefit of muting by comparing the user score a slice achieves
at a neighboring cell with a hypothetical allocation where we compute the score that the
same slice would have achieved on the same RBG without muting. We try a variant where
we directly use the score achieved by a slice at a neighboring cell without subtracting the
score from this hypothetical baseline. We find that it produces notably smaller reduction in
median FCT of prioritized users (10% lower than original RadioNinja) when compared to
our original design (Fig. 15 first bar from the left).

Impact of cell selection heuristic

With multiple valid muting hypothesis across cells, RadioNinja selects one based on benefit-
cost ratio across the set of benefitting slices and side-effect on other slices. We implement a
variant where we randomly select a hypothesis (which cell to mute) among multiple valid
ones. This simplified variant again produces a notably smaller reduction in median FCT
(11% lower than our original design as shown in Fig. 15), justifying the usefulness of our
optimizations in this context.
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