
Tidal: Tackling Concept Drift in
Provenance-based Advanced Persistent Threats
Detection
Yajie Zhou
University of Maryland, College Park, MD, USA

Nengneng Yu
University of Maryland, College Park, MD, USA

Tuo Zhao
Georgia Institute of Technology, Atlanta, GA, USA

Zaoxing Liu
University of Maryland, College Park, MD, USA

Abstract
Advanced Persistent Threats (APTs) pose significant challenges to cybersecurity due to their

evolving nature and ability to evade detection. This paper introduces Tidal, a novel provenance-
based intrusion detection system (PIDS) that is specifically designed to address concept drift in
APT detection. Tidal designs a modified Transformer architecture tailored for transfer learning,
including a Multi-head Transformer (MHT) with shared layers for learning common knowledge
and task-specific head layers for learning unique patterns. The system uses a pre-training and fine-
tuning workflow to achieve high post-drift adaptation and pre-drift retention accuracy. Additionally,
Tidal customizes its data embedding for detection on flexible audit log lengths and computes entity
relevance scores alongside classified attacks to aid in attack investigation. We evaluate Tidal by
simulating concept drift scenarios with real-world datasets. Results demonstrate that compared to
state-of-the-art detection systems, Tidal achieves an average of 27% higher recall and 31% higher
precision with only half of new training data for post-drift adaptation accuracy.

2012 ACM Subject Classification Security and privacy

Keywords and phrases Advanced Persistent Threat (APT), Provenance-based Intrusion Detection
(PIDS), Concept Drift, Transfer Learning, Machine Learning for Security

Digital Object Identifier 10.4230/OASIcs.NINeS.2026.1

Acknowledgements We thank all the anonymous reviewers for their constructive feedback and
valuable suggestions, which greatly improved the quality of this paper. This work was supported
in part by the U.S. NSF grants SaTC-2415754, CNS-2415758, and CNS-2431093. We extend our
special thanks to our shepherd for the thoughtful guidance throughout the revision process. We are
grateful to Chao Zhang, Simiao Zuo, Yue Yu for their early feedback, which helped shape the first
idea of this work.

1 Introduction

As cybersecurity challenges escalate, advanced persistent threats (APTs) raise particular
concern due to their stealthy, prolonged, and adaptive nature. Often orchestrated by well-
resourced groups, APTs involve meticulously planned, multi-stage campaigns designed to
infiltrate and persist within target systems over extended periods. These threats continu-
ously evolve their tactics, techniques, and procedures (TTPs) to evade detection, adapting
dynamically based on target defenses.

To address the adaptive behavior of APTs, provenance-based intrusion detection systems
(PIDSes) leverage kernel-level audit logs, which capture detailed system events, to model a

© Yajie Zhou, Nengneng Yu, Tuo Zhao, Zaoxing Liu;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 1; pp. 1:1–1:27

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leszhou@umd.edu
https://lesleychou.github.io/ 
https://orcid.org/0000-0001-6932-1038
mailto:joanrpublic@dummycollege.org
https://samfisheryu.github.io/
https://orcid.org/0009-0008-3021-1569
mailto:tourzhao@gatech.edu
https://www2.isye.gatech.edu/~tzhao80/
https://orcid.org/0000-0001-6004-8602
mailto:zaoxing@umd.edu
https://zaoxing.github.io/
https://orcid.org/0000-0002-9119-1679
https://doi.org/10.4230/OASIcs.NINeS.2026.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

history of system execution as provenance graphs to guide detection efforts. Recent research
into PIDSes employ machine learning-based approaches [23, 5, 64, 63, 17, 16, 1, 33, 53, 50, 9],
demonstrating improved accuracy in APT detection across a variety of environments.

As new APTs emerge over time, however, ML-based PIDSes are challenged by concept
drift, or the evolution of data that invalidates previously learned patterns. Concept drift
can cause a drop in model performance as the relationships learned previously decrease in
relevancy. This is of particular concern with APTs, which exhibit adversarial concept drift.
Unlike natural distribution shifts in traditional ML domains, attackers deliberately evolve
tactics to evade detection. Although recent research on PIDSes acknowledges concept drift
as in issue in APT detection [50, 9], there has been limited in-depth exploration of how to
address it.

In this paper, we identify three key challenges that arise when adapting ML-based PIDSes
for APT detection to address concept drift: 1) retraining a ML model often requires a large
amount of labeled data, which is scarce in APT contexts due to resource limitations and
privacy concerns, 2) continuously training an existing model may require fewer new labeled
samples but introduces the risk of catastrophic forgetting, where performance on previous
data declines, and 3) while concept drift is a commonly addressed issue in machine learning,
general solutions may fall short when facing APT-specific challenges, such as ensuring timely
detection and in-depth attack investigation.

We then introduce Tidal, a PIDS that specifically addresses the above challenges to
tackle concept drift in APT detection. Tidal is based on a simple insight: pre-drift and post-
drift APT data may exhibit similar patterns while differing in specific attack characteristics.
This drives Tidal’s two-phase design: first, it pre-trains on pre-drift data to capture general
system activity patterns as shared knowledge, then fine-tunes on limited post-drift data to
adapt to emerging attack (or benign) patterns in each dataset. This approach effectively
demonstrates transfer learning to tackle concept drift, and incorporates the following key
ideas:

1. A modified Transformer architecture tailored for transfer learning among
APT datasets. Inspired by the success of domain adaptation with large language and
vision models [58, 60, 21], we explore a standard Transformer architecture [52], but find it
limited in its ability to share knowledge among APT datasets. Based on domain-specific
data insights, Tidal instead incorporates a Multi-head Transformer (MHT) that contains
shared layers to capture common knowledge and multiple APT task-specific head layers that
specialize in each dataset’s unique patterns. Notably, MHT supports both signature-based
and anomaly-based detection through interchangeable head-layer implementations. In our
experiments, MHT improves upon adaptation accuracy in concept drift scenarios for APT
detection compared to baseline models that use Long Short-Term Memory (LSTM) and
Graph Neural Networks (GNN).

2. A pre-training and fine-tuning workflow to optimize accuracy under concept
drift. The learning process begins with pre-training a base model on existing APT data-
sets. When concept drift occurs, Tidal initiates a fine-tuning phase to adapt to new attacks.
Fine-tuning involves creating a new head atop shared layers to isolate post-drift attack pat-
terns, freezing the first half of shared encoder layers to preserve pre-drift knowledge, and
applying a lower learning rate for gradual adaptation. This strategy effectively balances
the influence of pre-drift and post-drift data, stabilizing transfer learning and preventing
catastrophic forgetting.

3. A customized data embedding that supports flexible detection lengths.
Tidal aims to maximize information density within model inputs by focusing on semantic



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:3

Signature
-based PIDS

Anomaly
-based PIDS

Post-drift
adaptation accu.

Pre-drift
retention accu.

Atlas [5] ✓ - Low Low
Unicorn [23] - ✓ Low Low
Flash [50] - ✓ Low Low
Kairos [9] - ✓ Low Low

Ours ✓ ✓ High High
Table 1 Overview of recent PIDSes for APT detection under concept drift.

context from audit logs, which tends to change more dramatically than the provenance graph
structure over short time windows. We complement the semantics with a careful selection of
structural provenance data, enabling detection on flexible time frames. This flexibility elim-
inates assumptions about data size during Tidal’s inference, allowing human investigators
to quickly respond with classified anomalies.

4. Entity relevance scores for attack investigation. Tidal generates relevance
scores for each system entity within the input provenance graph, indicating their relative
importance to detected anomalies. While not completely demystifying the machine learning
model’s explainablility, this feature significantly enhances transparency for the decision-
making process. By setting an appropriate relevance score threshold, Tidal highlights the
most relevant malicious events, effectively guiding human investigators to focus on the most
pertinent aspects of the provenance graph rather than being overwhelmed by extraneous
details. This targeted approach prevents information overload, potentially saving human
time and effort at investigation.

Tidal’s learning pipeline is implemented in PyTorch, comprising 3.5K lines of Python
and 400 lines of C++ code. To evaluate Tidal’s performance in concept drift scenarios, we
simulated two drift conditions using the DARPA E3 and E5 datasets, as publicly available
datasets exhibiting concept drift in APT scenarios are scarce. The evaluation focuses on
two key aspects: accuracy adaptation on post-drift data (i.e., an adapted model’s accuracy
on newly available data) and accuracy retention on pre-drift data (i.e., an adapted model’s
accuracy on previously collected data). Since current state-of-the-art PIDSes do not directly
address concept drift, we compare by continuously training alternative PIDSes on the same
data as Tidal to ensure fairness. Tidal demonstrates significantly better post-drift ad-
aptation accuracy, achieving average 27% higher recall and 31% higher precision when only
half of new data is available. Furthermore, Tidal’s training workflow also demonstrates ac-
curacy retention on pre-drift data (mitigating the forgetting of prior knowledge), achieving
average 43% higher recall and 38% higher precision than baseline PIDSes.

In summary, this paper makes the following main contributions:

• We present Tidal, an end-to-end learning framework designed to improve APT detection
accuracy in concept drift scenarios. To the best of our knowledge, this is the first PIDS
specifically tailored to address concept drift in APT detection.

• We introduce novel model structure and a pre-training/fine-tuning workflow that demon-
strates effective transfer learning for APT detection under concept drift.

• Tidal considers APT detection-specific challenges, supporting timely detection inference
without assumptions on input lengths and providing in-depth explanations of results to
assist human-led APT investigations.

• Compared to continuous training of existing PIDSes, Tidal improves both adaptation
accuracy on post-drift data and retention accuracy on pre-drift data. Tidal will be

NINeS 2026



1:4 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

available online at (link to be added with the full paper) to facilitate future research.

2 Background and Motivation

2.1 Provenance-based Intrusion Detection Systems (PIDSes) for APT

System audit logs serve as a primary basis for APT detection and investigation. Collected
through monitoring tools like Linux Audit [39] and Windows ETW[38], these logs record
kernel-level system calls. Each log entry contains a timestamp, an action between system
entities (e.g., process p1 connecting to process p2), containing file paths and names that
represent contextual semantics. To enhance analysis and provide a more structured repres-
entation, audit logs can also be represented as provenance graphs (Figure 4), where nodes
denote system entities and edges represent relationships such as read or write operations.
Provenance graphs offer a powerful abstraction of the log data, summarizing system activ-
ities over specific time windows and capturing historical causal structures among system
entities.

Provenance-based intrusion detection systems (PIDSes) leverage provenance data from
audit logs to drive machine learning approaches for APT detection and investigation. It can
be broadly categorized into two main types:

Anomaly-based PIDSes [23, 64, 63, 16, 53, 9, 50] model benign system activities by
training on audit system logs known to be free of attacks. They then raise alarms when
behavior deviates from their training data. These approaches are attack agnostic, in that
they do not depend on a priori knowledge of specific attacks. As such, they have the
potential to capture zero-day attacks. On the other hand, since any logs, whether benign
or not, that differ from the training data will be flagged as abnormal, they can be prone to
high rates of false positives.

Signature-based PIDSes [5, 17, 1, 33] model specific attack signatures to detect known
attack types by training a classification model on both attack and benign data. While these
systems show high accuracy in identifying previously encountered attacks and limit false
positives, they are constrained to known signatures and may fail to capture zero-day attacks
when confronted with new, unseen attack types.

2.2 Concept Drift in APT

In machine learning, concept drift describes the evolution of data that invalidates what was
learned previously. This leads to a drop in model performance as the relationships learned
during training become less relevant [57, 18]. In APT detection, concept drift can mani-
fest in the dynamic evolution of attack patterns, tactics, and malware signatures over time.
This phenomenon occurs as sophisticated attackers continuously modify their techniques
(including disguised benign patterns) to evade detection systems, making previously learned
detection patterns less effective. Recent work by Goyal et al. [19] and Mukherjee et al. [44]
demonstrates adversarial mimicry attacks against ML-based PIDSes. These attacks manip-
ulate nodes in the attack graph to mimic benign activities at the embedding level, making
it harder for models to distinguish. This highlights the importance of regularly updating
detection models to adapt to evolving threat techniques, if PIDSes are to remain resilient
against APT.



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:5

(a) Anomaly-based (Unicorn) (b) Signature-based (Atlas)
Figure 1 Detection performance during data drift from E3 Cadets to E5.

2.2.1 Motivating Scenario Example

To demonstrate the challenge of model adaptation in APT detection, we simulate a concept
drift scenario using two public datasets from the DARPA Transparent Computing (TC)
program [15]. The DARPA TC datasets capture red team activities that mimic real-world
APT attacks on critical enterprise services such as web, email, and SSH servers, alongside
benign activities.

We focus on the DARPA E3 [12] and E5 [13] datasets, collected in 2018 and 2019 re-
spectively. These datasets contain similar sub-datasets and attack types, including Cadets,
Theia, ClearScope, and FiveDirection (Table 3). To examine shifts in the provenance system
over time, we analyze the Cadets sub-dataset from both E3 and E5. While both E3 and
E5 Cadets involve a Nginx exploit, the attack signatures evolve: in E3, attackers gain shell
access and execute a malicious payload, whereas in E5, they employ HTTP POST requests
for remote code execution. Additionally, benign system log patterns shift significantly over
time as the red team adapts its behavior to simulate more subtle system activities.

To evaluate model performance under concept drift, we tested one signature-based PIDS
and one anomaly-based PIDS by training on E3 Cadets and testing on E5 Cadets without
continuous training. As shown in the left bars of Figure 1, the signature-based PIDS ex-
perienced substantial drops in precision and recall when applying the E3-trained model
to E5, due to its inability to recognize new attack signatures accurately. In contrast, the
anomaly-based PIDS achieved high recall on E5 by identifying non-benign behaviors but
generated high false positives with low precision, misclassifying new benign patterns in E5
as attacks due to their absence in the E3 training data. We then implemented continuous
training on E5 Cadets data to adapt the models, as recommended by previous ML-based
PIDS approaches [23, 64, 50, 9]. We retrained the E3 model using E5 Cadets and evaluated
it on both E5 and E3 Cadets. As shown in Figure 1 (middle and right bars), performance
improved on E5 but declined on E3, highlighting the difficulty of retaining prior accuracy
under concept drift and the need for better adaptation strategies in APT scenarios.

2.2.2 Model Adaptation Challenges Under Concept Drift

Building upon our motivating example, we highlight three key challenges for adapting a
PIDS under concept drift conditions.

NINeS 2026



1:6 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

• Limited new labeled data post-drift: Retraining detection models requires accurately labeled
new APT data, often constrained by resource availability [28]. For example, anomaly-
based PIDSes assume that benign training data is captured in a controlled environment,
ensuring the absence of attackers [9]. Otherwise, falsely labeled benign data could poison
the model, resulting in low precision and recall. Similarly, signature-based PIDSes rely on
newly labeled attack data to be accurate and complete so that it learns from new attack
signatures. The key challenge is improving data usage efficiency: with limited new labeled
data, how quickly and accurately can detection models adapt to emerging APT scenarios?

• Accuracy retention on pre-drift data: Many recent ML-based IDSes for APT detection
use deep neural networks (DNNs), including GNNs [64, 50, 9], Transformers [17], and
RNNs [5]. When concept drift occurs, existing PIDSes can retrain using both pre-drift
data (from prior training) and post-drift data (collected since the last training). However,
as data accumulates, this approach becomes impractical, particularly for smaller DNNs
due to data capacity limitations. Continuous online training with only new APT data
alleviates data capacity issues but risks “catastrophic forgetting”, where the model loses
previously learned APT knowledge [31, 29]. Thus, the challenge is adapting to post-drift
APT data while retaining knowledge from pre-drift data.

• Insufficiency of traditional concept drift adaptation methods: While general model drift
adaptation strategies (e.g., periodic retraining, online training, and ensemble methods)
exist [18, 36], they may not fully address the unique challenges of APT detection. A
crafted APT can deploy an initial malicious step and remain dormant for long periods
before executing the next phase, requiring models to understand long-term dependencies
between system entities. Additionally, timely detection and response are crucial for APT
detection and forensic analysis; waiting for a certain amount of data may allow the system
to be evaded. Therefore, the challenge lies in designing a model architecture and retraining
process that effectively addresses APT-specific issues while adapting to new concept drifts.

Since real-world APT scenarios will likely include concept drift conditions, our goal in
this paper is to design a PIDS for APT detection that addresses the above challenges.

3 Threat Model and Assumptions

We consider an APT attacker who performs sparse malicious actions blended with benign
behavior, persisting over long periods. The OS, audit logging system, and other security-
critical components are part of the trusted computing base (TCB). As in prior provenance-
based systems [25, 50, 9, 23, 64, 35, 40], audit logs are assumed to comprehensively capture
host activities, including provenance graphs and semantics such as actions, subjects, and
paths. Logs are also assumed to be free of misconfigurations, corruption, or compromise,
supported by secure logging and tamper-resistant storage [47, 6, 48, 2, 46].

Unlike prior work [9, 50, 5, 55] that assumes complete visibility and stable behavior
during training, we account for concept drift. We define concept drift as gradual changes in
system behavior that retain structural similarity to earlier patterns, such as new forms of
APTs. This motivates Tidal to prioritize both detection accuracy and adaptation efficiency.
We also assume that labeled data may be limited or partially inaccurate after drift, due to
delayed labeling or adversarial interference. Tidal is therefore designed to learn under weak
supervision and maintain robustness when labels are noisy or incorrect.



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:7

Figure 2 Tidal Workflow Overview

System Entity Attributes Relationships
Process image name, Start, Close, Open

File path name, Read, Write, Open, Execute,
Resolve, Delete, Fork

Network ip, src port, dst port Connect, Send, Receive, Bind
Table 2 System log semantics covered by embedding.

4 Design of Tidal

Tidal consists of four key modules (Figure 2): 1) a data embedding module that processes
streaming system audit logs into contextual and structural embeddings as model input (§4.1);
2) a pre-training module that uses existing APT data at T0 (pre-drift) to train a Multi-head
Transformer (MHT) to learn general knowledge across multiple APT datasets (§4.2); 3)
a fine-tuning module that transfers previously learned knowledge when new, often limited
data becomes available at T1 (post-drift) (§4.3); and 4) a detection module that deploys the
latest model to infer APT attacks in real time, classify instances as benign or anomalous,
and output a relevance score to assist human investigation (§4.4).

4.1 Contextual and Structural Data Embedding
At the data embedding stage, Tidal builds upon domain-specific insights about streaming
system audit log data to maximize the signal for APT detection when data is limited. Spe-
cifically, we observe that over shorter time frames, the natural language semantics of audit
log context may still change dramatically in comparison to the structure of the provenance
graph data. Therefore, in order to maximize the signal when system activity may be sparse
(such as under drift conditions), Tidal considers contextual semantics from audit logs as
primary, which is then complemented by a careful selection of structural provenance graph
data. As a result, Tidal makes fewer assumptions about audit log length, which allows for
greater flexibility with regard to detection granularity.
Contextual embedding for semantics: Tidal captures audit log semantics for system
entities, including types, attributes, and relationships summarized in Table 2. For any
relationships that represents a dingle action (e.g., read, connect), it can be easily embed-

NINeS 2026



1:8 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

ded to a unique vector space. For system entities that has hierarchical structure, Tidal
aims to make its embedded vectors close to each other, so that the model learns their hier-
archical relevance in the embedding. To achieve this, Tidal employs a frequency-based
hierarchical tokenizer for semantic embedding that dynamically adapts as new file paths
emerge. Paths, like /usr/firefox/file_1 and /usr/firefox/file_2, are parsed
into segments [usr, firefox, file_1, file_2] and organized in a hierarchical tree
with each segment having a frequency count. When the frequency of a segment surpasses
a threshold (default set as 100), it becomes a new token, ensuring commonly used paths
remain stable while rare paths are generalized to avoid overfitting. To maintain consistency
when token thresholds change, embedding updates are handled through smoothing. For
instance, if /usr/firefox/file_3 surpasses the threshold and becomes a new token, its
embedding can be computed as a weighted average of its previous embeddings, ensuring
smooth adaptation. This allows the model to balance between continuity and adaptabil-
ity, even as frequency distributions shift. While we considered existing tokenizers such as
Word2Vec [37] and WordPiece [51], these methods do not capture hierarchical similarity.
As a result, they cannot ensure that related file paths are embedded closely based on their
hierarchical relationships.
Structural embedding for provenance graphs: Tidal embeds provenance graphs from
audit logs to add structural relationships that complement its semantic embedding. Rather
than embedding the entire historical provenance graph, Tidal captures relationships within
recently updated subgraphs. It first identifies recent graph updates within the same temporal
window as the log input, then constructs a subgraph from all unique nodes and edges, also
including one-hop neighbors outside of the current temporal window for each node to capture
potential long-term dependencies (sufficient for capturing local structural relationship, see
details in §5.4). Afterward, we use a fast graph embedding method [32] to embed the graph
into fixed-size vectors to prepare for model input. While Tidal could integrate other graph
embedding methods, such as Graph2Vec [45], these approaches are more computationally
demanding than Tidal’s embedding methods, potentially slowing APT detection during
inference.

4.2 Knowledge Sharing with Pre-Drift Data
To address the concept drift issue, one common workflow is to pre-train a large model
on comprehensive historical data (i.e. pre-drift data), then fine-tune it on new, small and
specific datasets (i.e. post-drift data) [54]. However, unlike general intrusion detection tasks,
where substantial data is available for pre-training [30], APT detection data is limited. The
size of APT datasets is often small, and collecting and labeling new data is challenging [3].
To tackle these limitations, we design a novel model structure tailored for pre-training with
limited APT data, based on our analysis of public datasets.

Our analysis of public APT datasets shows that some APTs share certain level of similar
strategies. We examine the DARPA TC E3 and E5 [12, 13] datasets, comparing attack types
and graph embedding similarity. As shown in Table 3, these datasets feature similar attack
types, with the average cosine similarity of graph embeddings (ranging from -1 to 1) also
indicating partial similarity across E3 and E5 sub-datasets. This trend extends beyond the
DARPA datasets; other APTs, such as APT-42, are known to have historical ties to APT-35,
as highlighted in Mandiant reports [41]. Unlike prior approaches that train models for each
APT attack separately in implementation [4, 8, 49], we propose pre-training a model across
multiple APT attacks to capture shared patterns, enhancing model performance on limited
datasets. Joint pre-training enables the model to learn comprehensive system pattern and



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:9

Cadets Theia Trace FiveD

E3 dataset Nginx backdoor Firefox backdoor Firefox backdoor;
Browser Extension

Firefox backdoor;
Browser Extension

E5 dataset Nginx backdoor Firefox backdoor Firefox injection Firefox backdoor
Avg. graph

embed similarity 0.65 0.48 0.34 0.51

Table 3 DARPA TC APT dataset sshare similar attack types from E3 (2018) to E5
(2019) deployments.

Figure 3 Tidal’s Multi-head Transformer (MHT) architecture. Layers 1-4 are shared
among all attacks, while layer 5 is unique to each attack case.

attack strategies, improving its adaptability and robustness. For this purpose, we design a
multi-head Transformer model optimized for cross-APT learning.

Multi-head Transformer (MHT) model: The MHT model is pre-trained on a com-
bined dataset of multiple APT datasets to learn general representations while maintaining
attack-specific knowledge. Although Transformers are commonly used for cross-domain
learning [58], we find that a standard Transformer architecture lacks the capacity for effect-
ive knowledge sharing in APT detection due to unique patterns within each attack (Vanilla
Transformer baseline in §5.4). To achieve knowledge sharing without sacrificing specificity,
Tidal introduces a Multi-Head Transformer (MHT) model optimized for learning across
APTs. As shown in Figure 3, the architecture consists of: 1 a token embedding layer for
embedding semantic data from system audit logs, 2 a positional encoding layer to represent
token positions within a sequence, 3 a self-attention layer processing the outputs from 1
and 2 , 4 a normalization layer capturing causal relationships on the provenance graph,
merging the outputs of 3 and 4 via vector concatenation, and 5 attack-specific heads
(signature-based or anomaly-based) specializing in each APT dataset.

Tidal propose a novel architecture to flexibly supports both signature-based and anomaly-
based detection by adapting training data and loss functions at the last layer.

• Signature-based classification head: To use Tidal as a signature-based classification
system, denoted as Tidal (signature), the training data will contain both attack and

NINeS 2026



1:10 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

benign data samples. At the last layer, we use cross-entropy loss for classification, where
N represents number of training data samples, yi represents the label of each sample (0
for benign, 1 for attack), and ŷi represents predicted probability of the sample being an
attack.

Lsignature = − 1
N

N∑
i=1

(yilog (ŷi) + (1 − yi)log(1 − ŷi)) (1)

• Anomaly-based reconstruction head: to use Tidal as an anomaly-based detection
system, denoted as Tidal (anomaly), the training data will contain only benign data
samples. At the last layer, we use Mean Squared Error (MSE) for reconstruction loss,
where N represents number of benign data samples, xi represents the original benign
data samples, and x̂i represents reconstructed samples from the model.

Lanomaly = 1
N

N∑
i=1

∥xi − x̂i∥2 (2)

After selecting the detection system type, Tidal pre-trains the model with existing data and
creates a unique head for each specific attack. This structure allows shared layers to capture
general knowledge across APT attacks, while attack-specific heads enable specialization and
adaptation to individual attacks, as detailed in Algorithm 1.

Algorithm 1 Pre-training on Pre-drift Data

1: Input: Data embeddings at pre-drift T0

2: Output: Pre-trained APT-detection model
3: Initialize Ωshared ▷ Initialize shared transformer layers
4: for each attack dataset t do
5: Initialize Ht ▷ Initialize attack-specific head
6: end for
7: for each epoch do
8: for each batch in combined dataset do
9: Compute shared representation:

10: θT0 ← ForwardPass(batch.input)
11: for each task t do
12: Compute head-specific prediction:
13: pred[t]← ForwardPassHead(t, θT0 )
14: Compute loss for task t:
15: LT0 (θ)← LossFunction(pred[t], batch.labels[t])
16: end for
17: Backpropagation: BackwardPass(LT0 (θ))
18: Update model parameters θT0

19: end for
20: end for

4.3 Transfer Learning to Post-Drift Data
After pre-training on existing data, the model must be regularly updated to handle concept
drift as new attacks appear. Updates are critical for both signature- and anomaly-based
PIDS to recognize new attack signatures and evolving benign patterns. This reduces false
negatives in signature-based systems and false positives in anomaly-based systems. Since



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:11

Figure 4 Tidal flags the activity at timestamp 00:03 as malicious and raises an alarm.
With a relevance score threshold as 0.5, it reveals that /var/log/Covert.xlsx is ma-
licious. Although reading /home/usr/account is not directly related to attack, it is
part of the attack activity because /var/mail/bob has been exploited. Other nodes
are likely to be benign.

labeled data for new attack is scarce [22], the model must adapt efficiently to emerging
threats with limited samples [3].

Tidal leverages previously learned system patterns to adapt to concept drift. For ex-
ample, while specific backdoor exploitation attacks may differ, they often share common
behaviors in system audit logs, such as stealthy operations that appear benign but later
contribute to an attack. By initially training a base model to capture general representa-
tions across multiple APTs, we can efficiently fine-tune it on smaller datasets to adapt to
emerging attacks. This approach, introduced as a form of transfer learning, allows Tidal
to address new threats as new system provenance data becomes available.

Transfer learning methodology: Transferring knowledge to new APT attacks requires
adapting the model to capture unique features of emerging threats. However, a key challenge
is the risk of the model over-adjusting to new data, potentially "forgetting" important pat-
terns from its original pre-training. Specifically, if the model is pre-trained on data T0 with
parameters optimized the loss on T0: θT0 = argmin

θ
LT0(θ). When fine-tuning on new APT

data T1, the model parameters are updated to minimize the loss on T1: θT1 = argmin
θ

LT1(θ).
The forgetting issue occurs when the optimization for minimizing LT1(θ) conflicts with min-
imizing LT0(θ). As a result, the updated parameters θT1 may no longer be optimal for the
original T0, leading to an accuracy drop on prior data.

To mitigate forgetting, Tidal employs three fine-tuning strategies. First, rather than
updating all shared layers, Tidal freezes the first half of the encoder layers, only fine-tuning
the remaining half. The fine-tuned parameters θ∗ = argmin

θ∗
LT1(θfrozen, θ∗), where θfrozen

prevent fine-tuning on T1 from disrupting knowledge preserved from the pre-training data
T0. This allows general representations captured by the frozen layers on T0 to remain intact,
while enabling specific adjustments for T1. Second, Tidal applies a lower learning rate
during updates to the unfrozen layers, allowing gradual adaptation to T1, which balances
influences from both tasks. This also helps stabilize the fine-tuning by limiting parameter
shifts at each step. Finally, to effectively capture new attack-specific features, Tidal initial-
izes a new head layer for the new APT dataset, isolating unique patterns while retaining
broad knowledge. The complete fine-tuning approach is detailed in Algorithm 2.

4.4 Attack Inference and Investigation Helper

After the model is fine-tuned for a drifted scenario, Tidal performs attack inference with
aggregated results from multi-heads. Using Tidal (anomaly) as an example, each anomaly

NINeS 2026



1:12 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

Algorithm 2 Transfer Learning on Post-drift Data

1: Input: Pre-trained model; Data embeddings at post-drift T1

2: Output: Fine-tuned model for new APT
3: procedure KnowledgeTransfer(task, data)
4: Load Ωshared ▷ Load pre-trained shared layers
5: Initialize Hi ▷ Initialize a new head
6: Freeze θfrozen of the first half of Ωshared

▷ Prevent updates to initial shared layers for knowledge retention
7: end procedure
8: for each epoch do
9: for each batch in data do

10: Compute shared representation:
11: θT1 ← ForwardPassSharedLayers(batch.input)
12: Compute task-specific prediction:
13: pred← ForwardPassHead(t, θT1 )
14: Compute loss:
15: LT1 (θ)← LossFunction(pred, batch.labels)
16: Backpropagation: BackwardPass(LT1 (θ))
17: Update model parameters θT1

18: end for
19: end for

detection head n ∈ {1, · · · N} provides an output pn, representing the probability that the
nth head classifies the sample as benign. If pn is smaller than the detection threshold (set
as 0.5), it means the decision results from current head n is anomaly. The final decision for
anomaly detection is based on the aggregation of the decisions from all N heads. If any one
of the N heads detects an anomaly (i.e., classifies the sample as an anomaly), then the final
decision R is anomaly, as shown below.

R =
{

Anomaly, if ∃n ∈ N, pn = anomaly

Benign, if ∀n ∈ N, pn = benign
(3)

Tidal (signature) uses the same aggregation logic, except its pn represents the probability
of the input being an attack. Therefore, with Tidal (signature), if pn is greater than the
detection threshold (set as 0.5), then the decision from head n is classified as an attack.

Post inference, attack explanation is essential for analysts to effectively investigate and
mitigate future threats [27]. APT often persist in systems for long periods, disguising
themselves among benign operations. Existing systems [26, 5] that reconstruct attack story
graphs typically include thousands of entities labeled as either attack-related or benign,
which can overwhelm experts during review. Therefore, assessing the relevance of each
system event is helpful for pinpointing malicious activities.

Relevance Score. Tidal leverages the Transformer’s self-attention mechanism to provide
insight into specific model decisions [11]. Self-attention weights is trained through back-
propagation [7], represent dependencies across entities by linking input to various parts of
the neural network. The model’s pairwise attention mechanism allows distant elements to
interact, enabling the capture of long-range dependencies over extended time frames.

To enhance explainability, Tidal aggregates attention weights across all self-attention
heads, generating an average relevance score for each system entity. Let A

(h)
i denote the at-

tention weight of the ith entity in self-attention head. The relevance score Si is computed by
averaging the attention weights across all heads H (heads number set as 8), and normalizing



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:13

across entities in the current input sequence:

Si = 1
H

H∑
h=1

A
(h)
i∑

j A
(h)
j

(4)

This approach provides a quantitative measure of each entity’s importance in the model’s
decision-making process. By highlighting the most critical events and interactions, the
relevance scores offer context to the APT detection results. Visualizing these scores enables
security analysts to swiftly focus on pivotal attack operations, facilitating faster and more
accurate responses to potential threats.
A Running Example. To demonstrate Tidal’s deployment functionality, we use a phish-
ing email APT log snapshot from DARPA-TC3. In this scenario, an attacker sends a spread-
sheet attachment to Bob containing an encoded Powershell command, which downloads and
executes a script, resulting in a remote connection. The attacker then surveys the target us-
ing shell access, including reading user account files. Tidal processes streaming audit logs,
aggregating them at each timestamp for input to the detection model. While it classifies
inputs from the first two timestamps as benign, it flags activity at timestamp 00:03 as ma-
licious, triggering an alarm. Figure 4 shows the reconstructed graph used for investigation,
with relevance scores calculated for each internal event.

5 Evaluation

Tidal is implemented in approximately 3,500 lines of Python and 400 lines of C++ code.
All experiments are deployed on an Ubuntu 18.04 system equipped with an NVIDIA RTX
A100 GPU. To thoroughly evaluate Tidal when concept drift occurs in APT, we address
the following research questions:

• RQ1: How effective is Tidal compared to continuously training the baselines when
concept drift happens?

• RQ2: Does Tidal support accurate detection with varied lengths of input data?
• RQ3: How concise is Tidal’s relevance score for attack investigation?
• RQ4: Is Tidal robust against adversarial scenarios?
• RQ5: How do Tidal’s design choices hold up under an ablation study?

Concept Drift Evaluation Methodology. Concept drift evaluation in APT detection
is challenging due to data paucity and ambiguous drift definitions [9, 50]. Existing APT
datasets like StreamSpot [42] and OpTC [14] capture attack patterns at fixed points in time
but lack temporal evolution patterns necessary for systematic drift evaluation.

We use DARPA’s Transparent Computing (TC) datasets E3 and E5 [15] due to their
temporal separation (from April 2018 to May 2019) and comparable attack scenarios. We
define E5 as concept-drifted from E3 based on this temporal separation. This enables sys-
tematic drift evaluation across 129GB of data spanning Linux (Cadets, Theia, Trace) and
Windows (FiveDirection) scenarios.
Data Labeling: We label data using attack timestamps from DARPAs ground truth [12,
13]: events within attack periods are marked as attacks, others as benign. Attack-related
keywords in the ground truth help identify malicious system entities, which we use to manu-
ally compare Tidal s investigation graphs with ground-truth graphs. Details on training,
validation, and detection splits are in the Appendix.

NINeS 2026



1:14 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

(a) Linux system drift

(b) Windows system drift
Figure 5 Post-drift effectiveness comparison with anomaly-based PIDSes

Comparison Study: Tidal is the first APT detection system designed for concept drift,
making direct comparison with existing PIDS challenging. To ensure fairness, we implement
continuous training for other ML-based PIDSes to adapt to drift. We compare Tidal with
signature-based ATLAS [5] and anomaly-based Unicorn [23], Flash [50], and Kairos [9].
Selection prioritizes open-source availability rather than perceived importance. Broader
systems are discussed qualitatively in §7.

Metrics: We evaluate performance under concept drift using Precision (P), Recall (R), and
False Positive Rate (FPR). Precision measures the accuracy of positive predictions, Recall
measures the ability to identify true attacks, and FPR quantifies benign misclassification.
Together they offer a balanced view of detection performance, supporting meaningful com-
parisons and addressing real-world concerns such as accurate detection and reduced alert
fatigue. Additional metrics are discussed in later subsections.

5.1 Performance Under Concept Drift

We evaluate Tidal under concept drift along two dimensions: adaptation accuracy on post-
drift data and retention of pre-drift accuracy. This assesses how well models adapt to
new patterns with limited labeled data and whether adaptation preserves prior detection
capabilities.

Adaptation Evaluation We first compare Tidal with other PIDSes under stable condi-
tions without drift to reproduce their reported performance. This establishes a baseline for
both signature- and anomaly-based systems. We exclude Kairos results on FiveDirection
because its implementation did not support this dataset and we could not tune it success-
fully. Table 4 shows all anomaly-based systems, including Tidal, achieve similarly high
detection accuracy and low false positives under stable conditions. For ATLAS, which did
not originally use DARPA TC data, we adapted its embedding module for compatibility
while keeping its model structure unchanged. We attribute any performance gap between
Tidal (signature) and ATLAS to unoptimized hyperparameters on this dataset.



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:15

(a) Linux system drift

(b) Windows system drift
Figure 6 Post-drift effectiveness comparison with signature-based PIDSes

Cadet (E3) Theia (E3) Trace (E3) FiveD (E3)

P↑ R↑ FPR↓ P↑ R↑ FPR↓ P↑ R↑ FPR↓ P↑ R↑ FPR↓

ATLAS 0.85 0.88 0.05 0.90 0.91 0.03 0.87 0.95 0.02 0.89 0.89 0.05
Tidal (signature) 0.99 1.00 0.01 0.95 0.99 0.01 0.99 1.00 0.02 0.95 1.00 0.01

Unicorn 0.98 1.00 0.01 1.00 1.00 0.00 0.92 1.00 0.02 0.65 0.91 0.03
Flash 0.94 0.99 0.01 0.92 0.99 0.01 0.95 0.99 0.01 0.72 0.93 0.01
Kairos 0.80 1.00 0.01 0.91 1.00 0.01 0.93 1.00 0.01 N/A N/A N/A

Tidal (anomaly) 0.95 1.00 0.01 0.91 1.00 0.01 0.95 0.99 0.01 0.88 0.97 0.01

Table 4 Pre-drift results without addressing concept drift.

We then simulate drift from E3 to E5, training all models with the same amount of data
during the transition. Because Linux (Cadets, Theia, Trace) and Windows (FiveDirection)
logs differ significantly, we treat them as separate drift scenarios. Figure 5 shows that with
equal amounts of new labeled data, all anomaly-based systems achieve high recall even at
10% of new data. However, Tidal (anomaly) improves precision by more than 34% with
less than 50% new data, reducing false alarms more effectively than others. As labeled data
approaches 90%, differences narrow. A similar pattern appears for signature-based systems
in Figure 6. Because they rely on attack-labeled data, which is scarcer than benign labels
under drift, both Tidal (signature) and ATLAS show reduced recall. Nevertheless, Tidal
(signature) adapts more effectively than ATLAS. We attribute Tidal s overall advantage
to its ability to learn broad behavioral patterns during pre-training and transfer them to
drifted data during fine-tuning, even with limited new labels.
Knowledge Retention Evaluation A key challenge in fine-tuning under drift is cata-
strophic forgetting of prior knowledge. We evaluate models updated with 90% of E5 labels
on the pre-drift E3 dataset. Table 5 shows that all PIDSes decline relative to Table 4, but
other systems experience 1540% precision loss and 2050% recall loss, whereas Tidal drops
only 715% in precision and 211% in recall.

We attribute Tidal s reduced forgetting to two design choices. First, the Transformers

NINeS 2026



1:16 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

Cadet (E3) Theia (E3) Trace (E3) FiveD (E3)

P↑ R↑ FPR↓ P↑ R↑ FPR↓ P↑ R↑ FPR↓ P↑ R↑ FPR↓

ATLAS 0.23 0.51 0.56 0.42 0.41 0.33 0.47 0.35 0.42 0.29 0.38 0.54
Tidal (signature) 0.84 0.92 0.03 0.85 0.91 0.05 0.83 0.88 0.03 0.80 0.89 0.04

Unicorn 0.58 0.69 0.08 0.65 0.87 0.05 0.50 0.61 0.10 0.52 0.53 0.12
Flash 0.57 0.90 0.04 0.62 0.85 0.03 0.70 0.76 0.08 0.68 0.81 0.05
Kairos 0.64 0.85 0.04 0.61 0.79 0.04 0.72 0.79 0.05 N/A N/A N/A

Tidal (anomaly) 0.85 0.94 0.03 0.78 0.96 0.02 0.85 0.97 0.02 0.83 0.93 0.04

Table 5 Post-drift model test on pre-drift data with knowledge retention.

Figure 7 Layer-freezing effect on knowledge retention.

self-attention mechanism emphasizes relevant input features, helping retain knowledge from
older data. Second, freezing early encoder layers preserves pre-drift representations while
allowing later layers to adapt. We test Tidal (anomaly) with different numbers of frozen
encoder layers (1, 2, and 3 of 4 total) and evaluate on E5 Cadets (post-drift) and E3 Cadets
(pre-drift). Figure 7 shows the trade-off: freezing three layers maximizes retention but hurts
adaptation on E5, while freezing one layer maximizes E5 accuracy but increases forgetting
on E3. Tidal freezes the first two encoder layers to balance performance between pre- and
post-drift data.

5.2 Attack Investigation Assistance
While some previous PIDSes [5] focus on reconstructing an entire attack graph after pro-
cessing a big chunk of data (which may require hours of data accumulation), Tidal is de-
signed to provide explanations for each input shortly after detection (e.g., within a second).
Specifically, Tidal calculates a relevance score for each system event in relation to the
model’s decision for the current input. This score is then used to generate an investigation-
assistance graph, where the relevance of each event is visualized according to its impact
on the models decision, as shown in Figure 4. A tricky challenge is setting an appropri-
ate threshold for the relevance score to filter highlighted, attack-relevant events. Ideally,
these filtered events should be both accurate (covering all malicious activities) and concise
(minimizing false alarms that might confuse investigators).

We note that the DARPA APT dataset lacks explicit system event-level ground truth
for each attack, making it challenging to precisely evaluate the precision of reconstructed



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:17

More succinct for investigation 

Figure 8 Investigation tradeoff with different threshold of relevance score.

(a) Detection w/ mimicry attacks (b) Training w/ data contamination
Figure 9 Robustness analysis against adversarial scenarios

malicious events, though approximate recall can still be assessed. To evaluate the accuracy
of relevance scores, we use keywords mentioned in the ground truth report for each attack as
a proxy for ground truth, which has also been employed by recent APT detection PIDSes [9].

For each input detected as an attack in the E3 dataset, we vary the threshold from
0.1 to 0.9 to filter the attack relevant system events. In Figure 8, the x-axis shows the
average number of system events highlighted as malicious at each threshold, while the y-axis
represents recall compared to ground truth keywords. At a low threshold (e.g., 0.1), recall
remains high but includes numerous nodes as malicious, potentially increasing investigation
overhead for human analysts. When the threshold is too high (e.g., 0.9), the highlighted
malicious nodes are concise but may omit relevant attack events. Therefore, we recommend
that security analysts select a balanced threshold that aligns with their accuracy and resource
requirements. In the E3 dataset, relevance threshold as 0.5 offers a reasonable balance.

5.3 Robustness against Adversarial Scenario
One key concern in ML-based PIDS is robustness under imperfect conditions. Prior work [19,
44] shows that graph-based IDS can be vulnerable to adversarial mimicry, where attackers
manipulate node embeddings to resemble benign behavior. Concept drift can also lead to
mislabeled data, either from user error or adversarial contamination. To assess Tidal s
robustness, we simulate two test cases.

Adversarial Mimicry Robustness We simulate mimicry attacks by injecting benign
events into E3 Trace attacks. These events are randomly sampled from the benign pool

NINeS 2026



1:18 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

(a) Ablation study (b) Embedded neighbors
Figure 10 Design choice for data embedding.

Figure 11 Model choice comparison

to resemble real benign behavior. Figure 9a shows that Tidal maintains strong detection
performance even with thousands of added benign events. This resilience results from Tidal
s data embeddings, which combine contextual and structural information. Even when the
provenance graph resembles benign patterns, semantic indicators such as operations on sshd
files flag high suspicion. Additionally, the graph embedding includes one-hop neighbors, so
benign-looking noise linked to prior attacks still receives a high anomaly score.
Robustness to False Labels High-quality labels are difficult to obtain in APT settings,
especially during concept drift. Users may report erroneous alarms, and attackers may
poison data with mislabeled inputs. We evaluate Tidal by progressively injecting false
positive (attack) labels into the E3 Trace training set, from 5% up to 40%. For each setting,
we train with five random seeds and report mean and standard deviation.

Figure 9b shows that as false positive noise increases, precision drops by about 25% but
recall stays above 0.85 and the false positive rate remains near 0.01. When less than 20% of
data is mislabeled, Tidal shows good resilience. We attribute this to the multi-head design
in Tidal s MHT model, where gradients from noisier heads are averaged with those from
cleaner heads, reducing their impact.

5.4 Design Choice Analysis
We evaluate Tidal’s design across data embedding, model architecture, and training hyper-
parameters using the E3 Trace dataset.
Data Embedding We ablate the use of semantic and graph embeddings. Figure 10a
shows both are essential for detection accuracy, with semantic embedding contributing more.
Semantics help distinguish short logs more effectively than graph structure alone. For graph



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:19

(a) Detection performance (b) Resource efficiency
Figure 12 Design choice for data embedding.

embedding, we include 1-hop neighbors in each log sequence to capture connectivity with
historical context. Figure 10b compares 0-hop to 4-hop settings. Accuracy drops sharply at
0-hop due to missing context. Using more than 1-hop slightly reduces precision, likely due
to compressed representations in fixed-size embeddings. We recommend using 1-hop for the
best balance.

Multi-head Transformer Architecture Tidal uses a multi-head Transformer to improve
adaptability to concept drift. We compare it with three common ML-based PIDS models,
each pre-trained on E3 and fine-tuned on E5. Evaluation follows §5.1: performance on E3
(pre-drift), E5 (post-drift), and knowledge retention from E3. Figure 11 shows the vanilla
Transformer performs well on E3 but fails to adapt post-drift. Adding a new head in Tidal
preserves pre-drift knowledge while adapting to new data. LSTM performs worse due to its
limited ability to model long dependencies and separate post-drift patterns. GNNs handle
pre-drift well but degrade post-drift, likely due to structural graph changes.

Encoder Layer Depth We test encoder depths from 1 to 32 layers on E3 Cadets to
analyze the trade-off between performance and resource usage. Figure 12a shows accuracy
improves with more layers but declines after a point due to overfitting. Inference time grows
linearly. Figure 12b shows CPU efficiency improves but plateaus around eight layers, while
RAM usage increases significantly with deeper models. Based on this, Tidal uses 4 encoder
layers for optimal accuracy, reasonable inference time (around 2.1s), and balanced resource
usage.

6 Discussion and Limitations

Concept drift evaluation as a research challenge. One limitation Tidal faces is the
lack of APT detection datasets that exhibit realistic temporal evolution. While the DARPA
TC datasets support our drift simulation for evaluation, they capture only a limited subset
of how behavior changes over time. This dataset gap also highlights several important dir-
ections for future work. Mirroring ongoing research in networking and systems on applying
machine learning when the boundary between offline training and online deployment con-
tinually shifts [62, 61, 59], future APT detection research could focus on: (1) developing
long-term, continuously adapting datasets with documented drift patterns; (2) establishing
standardized evaluation platforms; (3) defining metrics that separate meaningful drift from
benign noise; and (4) building frameworks for sharing sensitive attack data while preserving
privacy.

NINeS 2026



1:20 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

Adapting to attacks with zero similarity. Tidal’s workflow operate under a threat
model where the data represents concept drift, i.e., while the attack and benign activities
evolve over time, some underlying similarity remains between pre-drift and post-drift data.
If there is an abrupt and complete change in the data distribution, meaning no common
features or relationships exist between the old and new data, it goes beyond the concept drift
scope and is typically referred to as concept shift or even domain shift. In such cases, Tidal
is no longer optimal for adaptation and may require full model retraining to address the shift.
While Tidal takes a step forward by addressing concept shift scenarios, adapting models
for future, unpredictable attacks remains an open challenge that needs further discussion.

7 Related Work

There exists many anomaly-based PIDSes for APT detection. UNICORN[23], DISTDET[16],
Log2vec[34] and TBDetector[53] transforms streaming graphs into fixed-size sketches, which
are then clustered to identify anomalies. FRAPpuccino[24] uses a windowing technique for
graph analysis. ShadeWatcher[64] introduces a recommendation system, allowing the model
to be further refined after encountering false positives. PrioTracker[35] computes priority
scores based on node statistics to improve accuracy. NoDoze[25] reduces false positives
by propagating and aggregating anomaly scores in dependent sub-graphs. ProGrapher[63]
embeds the entire graph and learns normal system behaviors using RCNN. NODLINK [33]
focuses on 10-second-level detection granularity and uses an online optimization algorithm
to model the graph.

Several studies have used NLP techniques to detect anomalies and attacks in log data.
DeepLog [17], LogShield [1], LogBERT [20] employ NLP models to capture patterns in be-
nign log events and identify deviations that may indicate malicious activity. LogAnomaly
[43] takes a different approach, training a LSTM model to detect both sequential and quant-
itative anomalies in log data. It uses Template2Vec [43] to embed semantic information
from synonyms and antonyms, which helps the model understand the relationships between
log entries. However, simply using discrete symbols from log files can make it challenging
to capture the temporal relationships between events. To address this limitation, Wang et
al. [56] proposed OC4Seq, which learns sequential information from both global and local
perspectives. While effective, the forget gate in Gated Recurrent Units (GRUs) [10] used by
OC4Seq may cause it to lose information over time, which could be problematic for detecting
long-term APT.

Compared to existing systems, Tidal focuses specifically on enhancing model adapta-
tion accuracy and efficiency in the presence of concept drift. Unlike traditional concept
drift scenarios, APT environments present unique challenges where adversarial evolution
demands specialized approaches. We view Tidal’s insights and workflow complements ex-
isting systems, offering a foundation to explore new advancements in handling evolving
attack scenarios.

8 Conclusions

We present Tidal, a provenance-based intrusion detection system designed to address
concept drift in APT datasets. Tidal employs a multi-head Transformer model with a
pre-training and fine-tuning workflow to enhance adaptation accuracy and efficiency during
concept drift. It achieves strong knowledge retention, minimizing the forgetting of previ-
ous data. Tidal tackles APT-specific challenges by supporting flexible input log lengths



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:21

and providing explainability for model decisions. Our experiments demonstrate that Tidal
maintains high accuracy in concept drift scenarios, even with limited new data, and exhibits
robustness against adversarial attacks and mislabeled data.

References
1 Sihat Afnan, Mushtari Sadia, Shahrear Iqbal, and Anindya Iqbal. Logshield: A transformer-

based apt detection system leveraging self-attention. arXiv preprint arXiv:2311.05733, 2023.
2 Adil Ahmad, Sangho Lee, and Marcus Peinado. Hardlog: Practical tamper-proof system

auditing using a novel audit device. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1791–1807. IEEE, 2022.

3 Khandakar Ashrafi Akbar, Yigong Wang, Md Shihabul Islam, Anoop Singhal, Latifur Khan,
and Bhavani Thuraisingham. Identifying tactics of advanced persistent threats with limited
attack traces. In Information Systems Security: 17th International Conference, ICISS 2021,
Patna, India, December 16–20, 2021, Proceedings 17, pages 3–25. Springer, 2021.

4 Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay Ce-
lik, Xiangyu Zhang, and Dongyan Xu. Atlas open-sourced code. https://github.com/

purseclab/ATLAS.
5 Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay Celik,

Xiangyu Zhang, and Dongyan Xu. {ATLAS}: A sequence-based learning approach for attack
investigation. In 30th USENIX Security Symposium (USENIX Security 21), pages 3005–3022,
2021.

6 Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. Trustworthy {Whole-
System} provenance for the linux kernel. In 24th USENIX Security Symposium (USENIX
Security 15), pages 319–334, 2015.

7 Adrien Bibal, Rémi Cardon, David Alfter, Rodrigo Wilkens, Xiaoou Wang, Thomas François,
and Patrick Watrin. Is attention explanation? an introduction to the debate. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 3889–3900, 2022.

8 Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas
Pasquier, and Xueyuan Han. Kairos open-sourced code. https://github.com/

ProvenanceAnalytics/kairos/tree/main.
9 Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas Pasquier, and

Xueyuan Han. Kairos: practical intrusion detection and investigation using whole-system
provenance. In 2024 IEEE Symposium on Security and Privacy (SP), pages 3533–3551. IEEE,
2024.

10 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bou-
gares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

11 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert
look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

12 DARPA transparent computing e3. https://github.com/darpa-i2o/

Transparent-Computing/blob/master/README-E3.md.
13 DARPA transparent computing e5. https://github.com/darpa-i2o/

Transparent-Computing.
14 Operationally transparent cyber (OpTC) data release. https://github.com/

FiveDirections/OpTC-data.
15 DARPA transparent computing program. https://www.darpa.mil/program/

transparent-computing.
16 Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu Wang, Ding Li, Xiapu Luo, and Xusheng

Xiao. Distdet: A cost-effective distributed cyber threat detection system. USENIX Security
Symposium, 2023.

NINeS 2026

https://github.com/purseclab/ATLAS 
https://github.com/purseclab/ATLAS 
https://github.com/ProvenanceAnalytics/kairos/tree/main
https://github.com/ProvenanceAnalytics/kairos/tree/main
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data
https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing


1:22 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

17 Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and
diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pages 1285–1298, 2017.

18 João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.
A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

19 Akul Goyal, Xueyuan Han, Gang Wang, and Adam Bates. Sometimes, you arent what you do:
Mimicry attacks against provenance graph host intrusion detection systems. In 30th Network
and Distributed System Security Symposium, 2023.

20 Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert. In
2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

21 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui
Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE
transactions on pattern analysis and machine intelligence, 45(1):87–110, 2022.

22 Xueyuan Han, James Mickens, Ashish Gehani, Margo Seltzer, and Thomas Pasquier. Xanthus:
Push-button orchestration of host provenance data collection. In Proceedings of the 3rd Inter-
national Workshop on Practical Reproducible Evaluation of Computer Systems, pages 27–32,
2020.

23 Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer. Uni-
corn: Runtime provenance-based detector for advanced persistent threats. arXiv preprint
arXiv:2001.01525, 2020.

24 Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo Seltzer.
{FRAPpuccino}: Fault-detection through runtime analysis of provenance. In 9th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 17), 2017.

25 Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, and
Adam Bates. Nodoze: Combatting threat alert fatigue with automated provenance triage. In
network and distributed systems security symposium, 2019.

26 Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. Combating dependence explosion in forensic
analysis using alternative tag propagation semantics. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1139–1155. IEEE, 2020.

27 Muhammad Adil Inam, Yinfang Chen, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael,
Sneha Gaur, Adam Bates, and Wajih Ul Hassan. Sok: History is a vast early warning system:
Auditing the provenance of system intrusions. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 2620–2638. IEEE, 2023.

28 Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting concept drift in malware classi-
fication models. In 26th USENIX security symposium (USENIX security 17), pages 625–642,
2017.

29 Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan.
Measuring catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

30 Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey of intru-
sion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1):1–22, 2019.

31 Diego Klabjan and Xiaofeng Zhu. Neural network retraining for model serving. arXiv preprint
arXiv:2004.14203, 2020.

32 Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation
on just a {PC}. In Presented as part of the 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12), pages 31–46, 2012.

33 Shaofei Li, Feng Dong, Xusheng Xiao, Haoyu Wang, Fei Shao, Jiedong Chen, Yao Guo,
Xiangqun Chen, and Ding Li. Nodlink: An online system for fine-grained apt attack detection
and investigation. arXiv preprint arXiv:2311.02331, 2023.

34 Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng. Log2vec: A
heterogeneous graph embedding based approach for detecting cyber threats within enterprise.



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:23

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1777–1794, 2019.

35 Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Junghwan Rhee,
and Prateek Mittal. Towards a timely causality analysis for enterprise security. In NDSS,
2018.

36 Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under
concept drift: A review. IEEE transactions on knowledge and data engineering, 31(12):2346–
2363, 2018.

37 Long Ma and Yanqing Zhang. Using word2vec to process big text data. In 2015 IEEE
International Conference on Big Data (Big Data), pages 2895–2897. IEEE, 2015.

38 Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang, and
Dongyan Xu. Accurate, low cost and instrumentation-free security audit logging for win-
dows. In Proceedings of the 31st Annual Computer Security Applications Conference, pages
401–410, 2015.

39 Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela
Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha. {Kernel-
Supported}{Cost-Effective} audit logging for causality tracking. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 241–254, 2018.

40 Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: Towards practical provenance
tracing by alternating between logging and tainting. In 23rd Annual Network And Distributed
System Security Symposium (NDSS 2016). Internet Soc, 2016.

41 Mandiant. How many alerts is too many to handle?
https://services.google.com/fh/files/misc/apt42-crooked-charms-cons-and-compromises.pdf,
2022.

42 Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. Fast memory-efficient anomaly
detection in streaming heterogeneous graphs. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1035–1044, 2016.

43 Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao Chen,
Ruizhi Zhang, Shimin Tao, Pei Sun, et al. Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs. In IJCAI, volume 19, pages 4739–4745, 2019.

44 Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen, Muhyun Kim,
Murat Kantarcioglu, and Kangkook Jee. Evading {Provenance-Based}{ML} detectors with
adversarial system actions. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 1199–1216, 2023.

45 Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005, 2017.

46 Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher Fletcher,
Andrew Miller, and Dave Tian. Custos: Practical tamper-evident auditing of operating
systems using trusted execution. In Network and distributed system security symposium,
2020.

47 Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam Bates. Logging to the danger zone:
Race condition attacks and defenses on system audit frameworks. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pages 1551–1574,
2020.

48 Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers, Margo
Seltzer, and Jean Bacon. Practical whole-system provenance capture. In Proceedings of
the 2017 Symposium on Cloud Computing, pages 405–418, 2017.

49 Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Hassan. Flash open-sourced code. https:

//github.com/DART-Laboratory/Flash-IDS.

NINeS 2026

https://github.com/DART-Laboratory/Flash-IDS
https://github.com/DART-Laboratory/Flash-IDS


1:24 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

50 Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Hassan. Flash: A comprehensive approach to
intrusion detection via provenance graph representation learning. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 139–139. IEEE Computer Society, 2024.

51 Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou. Fast wordpiece
tokenization. arXiv preprint arXiv:2012.15524, 2020.

52 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

53 Nan Wang, Xuezhi Wen, Dalin Zhang, Xibin Zhao, Jiahui Ma, Mengxia Luo, Sen Nie, Shi
Wu, and Jiqiang Liu. Tbdetector: Transformer-based detector for advanced persistent threats
with provenance graph. arXiv preprint arXiv:2304.02838, 2023.

54 Pingfan Wang, Nanlin Jin, Duncan Davies, and Wai Lok Woo. Model-centric transfer learning
framework for concept drift detection. Knowledge-Based Systems, 275:110705, 2023.

55 Su Wang, Zhiliang Wang, Tao Zhou, Hongbin Sun, Xia Yin, Dongqi Han, Han Zhang, Xingang
Shi, and Jiahai Yang. Threatrace: Detecting and tracing host-based threats in node level
through provenance graph learning. IEEE Transactions on Information Forensics and Secur-
ity, 17:3972–3987, 2022.

56 Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen, and Jiliang Tang.
Multi-scale one-class recurrent neural networks for discrete event sequence anomaly detection.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 3726–3734, 2021.

57 Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean. Charac-
terizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994, 2016.

58 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang
Sun. Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

59 Zhengxu Xia, Yajie Zhou, Francis Y Yan, and Junchen Jiang. Genet: Automatic curriculum
generation for learning adaptation in networking. In Proceedings of the ACM SIGCOMM
2022 Conference, pages 397–413, 2022.

60 Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113–12132, 2023.

61 Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip
Levis, and Keith Winstein. Learning in situ: a randomized experiment in video streaming.
In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 495–511, 2020.

62 Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis, and
Keith Winstein. Pantheon: the training ground for internet congestion-control research. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, 2018.

63 Fan Yang, Jiacen Xu, Chunlin Xiong, Zhou Li, and Kehuan Zhang. {PROGRAPHER}: An
anomaly detection system based on provenance graph embedding. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4355–4372, 2023.

64 Jun Zengy, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng Chua, and
Zheng Leong Chua. Shadewatcher: Recommendation-guided cyber threat analysis using sys-
tem audit records. In 2022 IEEE Symposium on Security and Privacy (SP), pages 489–506.
IEEE, 2022.

A Details of DARPA dataset splitting

Table 6 show the details of data splitting approach used for evaluation on the DARPA dataset.
Due to the limited availability of attack data, some training, validation, and testing sets are
deployed on the same day. In such cases, we use timestamps to separate the data for that
day, allocating the first 80% for training, another 10% for validation, and the rest 10% for
testing.



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:25

Training set Validation set Testing set

E3-Cadets 2018-04-06, 2018-04-11 2018-04-12 2018-04-13
E3-Theia 2018-04-10 2018-04-10 2018-04-12
E3-Trace 2018-04-10 2018-04-12 2018-04-13
E3-FiveD 2018-04-11 2018-04-11 2018-04-12
E5-Cadets 2019-05-16 2019-05-16 2019-05-17
E5-Theia 2019-05-14 2019-05-14 2019-05-14
E5-Trace 2019-05-14 2019-05-14 2019-05-17
E5-FiveD 2019-05-09 2019-05-17 2019-05-19
Table 6 Data splitting for evaluation

(a) Anomaly-based System (b) Signature-based System
Figure 13 Detection performance under flexible length of input data.

A.1 Detection on Varying Input Lengths

Earlier graph-based PIDSes [23, 5] often make specific assumptions about input graph size
to ensure that the graph structure provides sufficient information for accurate model pre-
dictions. In contrast, Tidal requires no assumptions about input length at streaming time,
allowing detection length to be tailored to a security engineers operational requirements.
Recent graph-based approaches also address detection granularity. For example, Flash [50]
provides node-level detection granularity, while ShadeWatcher [64] focuses on edge-level
granularity. Since the primary focus of Tidal is addressing concept drift, we do not expect
it to surpass recent end-to-end PIDSes across every metric. Therefore, we compare Tidal
with two earlier graph-based PIDSes to highlight its support of flexible detection granularity
as a streaming detection system.

We evaluate the impact of increasing input log length, from short to long, on Tidal
s detection performance using the E3 dataset. With Tidal (anomaly), Figure 13a shows
that while detection accuracy improves as input length increases, the recall rate remains
consistently above 0.95. In contrast, the baseline systems recall and precision decline signi-
ficantly with shorter input lengths. Tidal’s superior performance on shorter input lengths

NINeS 2026



1:26 Tackling Concept Drift in Provenance-based Advanced Persistent Threats Detection

Figure 14 Model architecture in Tidal

is attributed to its effective integration of contextual and structural information. When
graph information is insufficient in shorter inputs, Tidal (anomaly) focuses on semantic
information to better differentiate among short logs.

For Tidal (signature), Figure 13b demonstrates that Tidal outperforms the baseline
system on longer input lengths. We attribute this performance difference to Tidal s en-
hanced ability to capture long-term dependencies. The baseline system, which employs
an LSTM model, may suffer from gradient explosion. During back propagation, repeated
multiplications across many timesteps can cause gradients to grow or diminish exponen-
tially. Additionally, LSTMs tend to prioritize recent states, potentially overlooking distant
dependencies that can be critical for detecting stealthy attack patterns. In contrast, Tidal
s Transformer-based model avoids gradient explosion over long input sequences by employ-
ing self-attention mechanisms rather than recurrent structures. This design enables attack-
related information to flow directly across all system events without repeated multiplications,
keeping gradients stable across long sequences and enhancing detection reliability.

B Model hyper parameters of each layer

Using Torch 1.13.1, our model is implemented with one token embedding layer, one positional
encoding layer, and four transformer encoder layers (Figure 14). We use one normalization
layer on top of the input for the embedded graph vectors. After concatenating both data
types, we implement a sequential classifier for each APT task as a head to calculate its
prediction probability. For learning rate, we use a layer-wise decayed learning rate starting
with 1e-3, which we find performs well during training.

C Case study of attack investigation

To demonstrate the investigation details, we present three case studies using Firefox back-
door attacks in the E3 datasets. Figure 15a shows that Tidal identifies the later SSH key
reading operation and bash execution as highly related to the attack. In Figure 15b, Tidal
identifies the malicious IP address and also the passward reading malicious activities by
/var/log/devc. In Figure 15c, Tidal detects an unconnected IP address, 156.78.147.114,
as malicious, even though it is four hops away from the malicious IP address detected by
ATLAS. Identifying the malicious IP address early enables security engineers to blacklist it,
preventing future exploitation.



Y. Zhou, N. Yu, T. Zhao, Z. Liu 1:27

(a) Tidal on Cadet

(b) Tidal on Trace

(c) Tidal on FiveD
Figure 15 Relevance score in Tidal helps analyst to understand more complete attack

story on malicious entities.

NINeS 2026


	1 Introduction
	2 Background and Motivation
	2.1 Provenance-based Intrusion Detection Systems (PIDSes) for APT
	2.2 Concept Drift in APT
	2.2.1 Motivating Scenario Example
	2.2.2 Model Adaptation Challenges Under Concept Drift


	3 Threat Model and Assumptions
	4 Design of Tidal
	4.1 Contextual and Structural Data Embedding
	4.2 Knowledge Sharing with Pre-Drift Data
	4.3 Transfer Learning to Post-Drift Data
	4.4 Attack Inference and Investigation Helper

	5 Evaluation
	5.1 Performance Under Concept Drift
	5.2 Attack Investigation Assistance
	5.3 Robustness against Adversarial Scenario
	5.4 Design Choice Analysis

	6 Discussion and Limitations
	7 Related Work
	8 Conclusions
	A Details of DARPA dataset splitting
	A.1 Detection on Varying Input Lengths

	B Model hyper parameters of each layer
	C Case study of attack investigation

